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SUMMARy

This Report Continues tht presentation of the untruncated orbital theory
begun in Technical Report 88063. The effects of the general Zonal harmonic,
Jt , are now covered, the main x.sults being a trio of formulae for perturbations
in the spherical-polar coordinates introduced in the previous paper The formu-
lae are only first-order in Jt , but, in conjunction with the second-order
results for J2 published in Part 1, the complete et od formulae may be regar-
ded as constituting a second-order theory, the Earth's J2 being ouch larger
than Jt for I > 2 .

The mean elements of the theory are defined in such a way that, for each
Jt , the coordinate-perturbation formulae have their simplest possible form, with
no occurrence of zero denominators. The general formulae are used in a rederlva-
tion of the results for J3 , given in Part 1, and in a derivation of results for
J4 •

Numerical comparisons with reference orbits ate held over to a later report
(Part 3).
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1 INlTRODUCTION

This Report is the second of an intended trilogy devoted to satellite

motion about an axi-symmetric primxry, i.e. about a gravitating solid of

revolution. Thus it continues the exposition of Ref 1, which will henceforth be

referred to as 'Part 1'. Part 1 brought together the principles of an approach

to orbit modelling in which lengthy expressions for short-period perturbations in

the usual osculating elements are compressed into concise expressions for pert-

urbations in a particular set of spherical-polar coordinates; it then proceeded

into the presentation of a complete second-order theory for perturbations due to

the zonal harmonic J2 , and a complete first-order theory for J3 " When the

primary body is the Earth, J3 '(and every subsequent JZ ) is of order J2  ,, no

Part I may be regarded as dascribing (for J2 and J3 only( a compleie second-

order theory for Earth satellites, where 'first order' refers to effects of

relative magnitude io-
3 
. Though Part 1 has only recently been publishel, a

rbsuma
2 

of the theory had been given much earlier.

Two other papers are relevant to the maturation of the trilogy: a relent

one
3 
on mean elements (as used in Part 1), with particular reference to the

relation between mean semi-major axis and mean mean motion; and a much earlior

(and more important paper
4
, of slilar title to the trilogy's, that establisted

formulae for secular and long-period perturbations dae to the general JZ (so

general, in fact, that k could be negative, the formulae then being applicable'

to lunisolar perturbations). The present Report effectively combines the new

approach of Part I with the general principles and notation of Ref 4, the result

being a complete theory for the zonal harmonics; secular and long-period

perturbations are applied to mean orbital elements, and short-period

perturbations to coordinates.

Part 3 of tee trilogy will be largely devoted to the way in which the mean

elements evolve over periods of time longer than just a small number of orbital

revolutions. This topic, which was given limited attention in Part 1, is

entirel neglected in Part 2. It is intended that Part 3 will also give details

of the Fortran program(s) written to evaluate the accuracy of the overall

approach, using harmonies up to J4 • (The variations in the mean elements are

computed by a technique that involves a numerical component of an otherwise

analytical model, aspects of this technique were described in the paper
5 
that

originally outlined the author's philosophy of coupling a hybrid computational

procedure to the coordinate-perturbation approach.)
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Other auttors have published first-order formulae for satellite

perturbations due to the geopotential; they usually address the subject more

generally than here, by covering the tesseral harmonics as well as the zonal

harmonics. The first entirely general results were derived by Groves
6
, in an

analysis of formidable complexity, whilst the classic eference is the text-book

of Kaula
7
. The very generality of the formulae a Refs 6 and 7 makes it

difficult to write down expressions for individual effects, however,, and it ia

not even easy to show that the two sets of formulae are formally equlvalent (the

full rirst-order expression for the perturbation in mean anomaly is omitted in

Ref 6, and the supplementary terms are only added as an afterthought in Ref 7).

Much of the difficulty in the general analysis arises from the need, when

covering the tesseral harmonics as well as the zonal harmonics, to allow for the

rotation of the primary. The uniformity of this rotation with time makes it

natural to work with M (mean anomaly), rather than v (true anomaly, as

integration variable,, but this inevitably leads to infinite summations. When the

analysis is restricted to the zonal harmonics, however, use of v (rather than M

leads to expressions that are free of infinite summation, and Zafiropoulos
8 
has

recently published untruncated formulae for the first-order perturbations in the

orbital elements due to the general Jt . The formulae of Ref 8 are much more

explicit than those in Refs 6 and 7, but this is unfortunately at the expense ,f

some very long expressions - it takes more than five pages to express the basic

formulae, aid even then the supplementary terms of the perturbation in M are

again absent. Now it will emerge from the present Report that the formulae of

Zafiropoulos can be expressed much more concisely. The real breakthrough comes,,

however,, when the short-period perturbations in elements are replaced by

perturbations ln coordinates. if it were not for the rotation of the primary,

this procedure could be immediately extended to the tesseral harmonics*; fc'r

orbits of sufficiently low eccentricity there is no difficulty, and very simple

general formulae were given in Refs 5 and 9, having originally been derived

during . stud;
10 

of Navstar/GPS.

AS w, -h Part 1,, a List of Symbols is appended to the Report; it is almost

entirely ciosistent with the List of Part 1, the few e.ception3 being noted. The

meaning of every new symbol is fully specified in the text, but only minimal

a Appendix A, which is in the nature of a posscript, outlines what is involved
in the extension for a non-rotating primary, and a separate paper is planned
for later publication.

TR 89022



explanation is given for those carried over from Part 1. This in true, In

particular, for standard symbolism: thus we note, straight away, that the

orbital elements used are a, a, i, 0, w and M . an arbitrary one of which is

denoted (generically) by C ; also M - a + f e where f is s.iorthand for

fn dt , the integral being taken from epoch to current time. We continue to make

use of the quasi-elements V , p and L , realli only defined at the

differential level; thus, d(* dw c d (where c - cos 1 ),, dp - do + q dA

(where q
2 
. 1 - e

2 
) and dL- dM q d.

As explained in Part 1, each osculating element, , may be regarded as

the sum of a mean element, [ , and a short-period perturbation, 6 , so that

+ . (1)

A 'semi-mean' element, ,, is also needed (see section 3.2 of Part 1), but in

Part 2 we will usually ignore the distinction between Z and . The effect of

this neglect is that we do not distinguish between the quantities denoted by

6i , 6p; and SC in Part 1, normally using 6C here in the sense of SpC o:

Part 1; towards the end of the Report 'In deriving the perturbatione due to

J4 , in section 8.5), we remind the reader of the additional terms (split betdeen

4 and 6c , as explained in Part 1 that are needed to express 'first-order)

perturbations in full. Not even the distinction between osculating elements and

mean elements is of significance in evaluating the right-hand sides of equations

in general, since second-order perturbations are not taken into account in

Part 2, but the following important distinction (on left-hand sides) between

and t is worth noting: Lagrange's planetary equation for e constitutes the

starting point of analysis for the element 
4 , whereas a formula for t is part

of the goal of that analysis.

The analysis is greatly facilitated by using, instead of w and u

(argument of latitude), the modified quantities w' and u' where

W' - W -+ and u' - u - 4. (2)

To avoid any confusion, it is remarked that the use of the accent (prime sign)

here has a connotation entirely different from that which distinguishes a

(osculating semi-major axis) from a' ; the lattr quantity is an absolute

constant of the motion '(under zonal harmonics only), whicn (as shown in Part 1)
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constitutes the best choice for mean semi-major axis (9), to whatever order the

analysis is conducted. With u' now introduced, it is convenient to define here
k hthe much-used quantities Ci and Sj ; thus*

Ck - cos Qv , ku, and sk - sin Qv ku'). 3)

When there is no ambiguity in regard to k , the superfix (but never the suffix

will often be omitted. (Warning: Cj and Si , as used in Part 1, identify with

c -2 and-_.2 here.)

As the primary is assumed axi-symmetric, we start from the potential

function a/r + I UZ , where the individual terms of the disturbing function are

given (in the usual notation by

uZ- - , (R/r)Z PZ(sin 0)

The value of i in the summation is norrally taken to run from 2 upwards, since

the cases i - 0 and Z - 1 are essentially trivial,, but the general formulae

to be developed cover the case i - I without difficulty; both 'tri ial' cases

are instructive and are interpreted in section 8, following Ref 4. if the

concept of an axi-symmetric primary is generalized to allow for mass outside the

orbital region, as well as inside,, then () can be extended to cover negative

, as in Ref 4; the only change needed in the expressirn for Ut i that Pt

is replaced by P-Z-I . Our overall requirement is to Integrate the planetary

equations for the general Ut , thereby obtaining the first-order contributions

to each 4 and 6 ,, and then to combine the ic (for the six elements) into

Sr, 6b and Sw ,, the corresoonding perturbations in the spherical-polar

coordinate system attacbed to the mean orbital plane; the latter is specified by

and I ,, and the transformation from the (r,b,w)-coordinate system to the

usual rectangular equatorial system is described in detail in Part 1.

In section 2 we decompose U, as

Ut U (5)

This notation leads to more concise expressions than if the trigonometric
argument was jv + kw' , as was originally planned; the disadvantage is that
the Kepler-conotant quantities are now C.k and .k , rather than CO and So .
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where 0 k 1 and U is only non-zero when k has the sane parity as

(or as -Z - 1,, in the extension to .< 0 . The decomposition arises as ,

in UZ ,, i effectively replaced by I , and this invo.ves the introduction of

certain '-.illes of inlilnation functions. The functions Ati I were originally

introduced in Ref 4 and are used again,, but quantities Atk , proportional to the

Ak(i values, are actually more convenient. Related functions, and assoaiated

quantities, are also introduced, and recurrence relations are given. These

relations (and corresponding relations for the eccentricity functions, referred

to in the next paragraph) are required here in the development of the theory, but

they are also important as computational aids in the Implementatio f the

theory. The U can be treated separately in all the analysis up to the

derivation of the 6r and the 6w ,, but there is a complication in the

derivation of 6b ; this will be handled by the introduction of another index,

K , which is always of the opposite parity to Z (and hence k0.

* Following the elimination of 6 , we must also eliminate r , using the

basic formula of the ellipse

S + 0 0cosv, (6)
r

before the planetary equations can be integrated. This involves families of

eccentricity functions, which are introduced in section 3. The functions BI(e)

were originally introduced in Ref 4, but the quantities BRj ,, proportional to

them, are actually more useful. Recurrence relations are given, and these are

even more important then the ,elationu for the inclination functions. !t is

implicit in the use of the Btj that every Uk could be further decomposed,

into Uki say, but we prefer not to do this, postponing the introduction of

the Rj until Ut , in each planetary equation, has been eliminated in favour

of an explicit expression. thus the notation Uk is not

The development of each planetary equation, via first the Atk and then

the Bj , is the topic of section 4. As already rmarked, we avoid infinite

summations by retaining v as an argument of the equation (as opposed to

eliminaLing it in favour f M ), and indeed we make it the integration variable

by applying the relation

d- n q-
3 
(p/r)

2  
(7)
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Each equation now expresses d /dv rather than , as a (finite) sum of terms

In v . Each such term is just a multiple of 9 , or S, as it turns out, so

the integration of the equation is immediate. Terms with k + j 0 lead to the

6C by definition. Terms with k + J - 0 , on tle other hand, are effectively

constant over the short term, and contribute directly to ' ; when k - 0 (and

so also j - 0 ), the integrated contribution is a secular perturbation, whilst

the terms with k 0 0 contribute to the long-period perturbation. The

dintinction is important for Earth satellites, because the secular variation of

w (due to J2 ) must be allowed for In integrating the perturbation, but the

subject was dealt with in Part I and will be picked up again in Part 3; there

will be no further reference in Part 2 to this coupling between J2 and the

other J.

Formulae for the lk (C due to Uk ) are collected in section 5, whilst

the reduction of the appropriate 6 to formulae for 6r , 5b and 6w is the

subject of the next two (and much longer sections. As described in previoun

paern there is an important distinction between the integrations required for

the t4, types of term: for the k . the process leads to definite integrals

(see Parta 1 and 3). necessarily zero if taken over zero time from epoch; in

Zk-components of the 6C , on the other hand, the process leads to epoch-

independent indefinite integrals that (apart from the complication of nemi-mean

elements) satisfy '(1). aut indefinite integrals contain arbitrary constants,,

where a 'constant' in the present context is any quantity that is independent of

the fast-varying v , i.e. would be a true constant for motion in a fixed

ellipse. It is only when theme constants are all assigned that (at the first-

order level) the mean elements, , , are fully defined.

It ham been noted that enormous advantage accrues from taking ' to be the

exact quantity a' (defined by the energy Integral, as explained in Part 1), but

there are no immediately compelling reasons for associating particular constants

with any of the other five elements. We therefore base our choice on the

philosophy of making the expressions for 6r ,, 6b and 6w as simple as

possible. These expressions, which constitute the most important results of the

Report,, are presented in their general form in section 6; each of the three

expressions involves a summation over the index J, with the integration constants

for tae elements (other than a ) not yet taken into account.
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In the general formulae just referred to, certain values of j in the

summations would involve terms of zero denominator, and it is by the eliminatior

of all these terms that the integration constants (other than for a I are

chosen. This is the subject matter for seotion 7, which completes the entire

analysis. An outline of the material in this section is as follows. First,,

the formula for the mandatory constant in 6a (for each Uk ) is reoorded,
essentially as a matter of completeness. Second, the constants are derived for

6e and 6M that validate the omission of the terms with particular j that

would otherwise arise in 6r . Third, the constants are derived for 61 and 6Q

that do the same thing for 6b . Fourth, special terms (with particular j )

in Sw , that could not be included in section 6 because t.y are induced by the

constants in 6e and 6M , are obtained. Finally, the constant in 6W (for

earh Uk ) is derived.

Examples of the general formulae of section 6, together with the special

terms in kw derived in secticon 7, are given in section 8: first,, for the

trivial oses t - 0 and t - 1 , the interest in which 'as been remarked; then

for Z - 2 and Z - 3 , leading (as a useful overall checex to results already

known from Part 1; finally, fo" Z - A , leading to formulae not hitherto

published.

2 FUNCTIONS OF INCLINATION REQUIRED IN EXPANDING THE POTENTIAL

Following Ref A, we expand PZ(sin 6) , required in '(), via the addition
theorem for zonal harmonics (or Legendre polynomials); thus

Ft(sin B) 11 U kt T-7T a)' % u 8
k-O

Here u0  1 ,u k -2 if k > 0 ,and the Legendre function Pk is defined by

P
k(c)  

• ds p(c)
Z1 c dck
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12 The second factor (the k'th derivative in (9 is a polynomial in c f
which '(with k I t) does not vanish when c - 1 , its value then being

(t - k)/({2
k 
k1 (t - k)1) . Hence this factor may be normalized", in a certain

useful sense, and we write

dkPj(c) ( - k)l A(i), (10)

de
k  

2k kl (i -
k)l Z

where Ak(ij is a pure polynomial n s C- sin i if k has the same parity as

Z but has an adlitional factor a if k and t are of opposite parity; in

each case the constant term in the polynomial is unity,, by the normalization.

Explicit expressions for the A(i) are given in Table 1, for values of Z and

k up to 6.

We can now rewrite (8) as

PL(3in )" alk s
k 
A(ij Au' , (11)

k-O

where the constant, alk , is given by

tik - uk P(0) /(2
k 
k1 .'(12)

A different constant,, Ck , was used in Ref 4, incorporating a factor associated

with the eccentricity functions of section 3; it is given by -2-k (i 1 ) t, ,

where (m) is the usual binomial coefficient, m here (and throughout the paper)

being used to denote a general integer, with negative values allowed; when

0 , in (12) must be replaced by P.tj ,, so that ak - , but the

relation of s£a to the of Ref A is unchanged. It is clear, from the last
pr t () or Pk .(O)) vanishes when k and i (or -Z - I ) areparagraph,+ that P()(rp

of opposite parity,, and it tay be shown thet when the parity is the same,

This 'normalization, which nas nothing to do with th- standard normalization of

the spherical harmonics and their J-coefficients, leads directly to AC(i) - 1

one of thy pair of starting values for the recurrence relation (21). .or some

purposes a different normalization is preferable such that A(i) is defined

for all i 0 . and A6(i) - I ; the family of normalized functions can then
be extended in a unified manner when the orbital theo-y is to cover the

tesseral harmonics (Appendi A). 8
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(-) 21 (j+9Z W )! (+(T.- k.))' (3

In substituting (110 into (0i it is of great benefit to introduce a new quantity,

AU 1, defined by

A9.9  - J, (R/P)
. 
atk a

9 
Ak(i)' 14l9)

where p C - a(1 - e
2
)) Is the semi-latus rectum (or parameters of the orbit;

the equation applies when I < 0 , so long as the suffix of A is replaced by

-t - I . The use of Ak permits us to write the general term of (5(. using

also the notation of (3), as

U - - ( p/r)t
.  

Aik c . (150

It will be noted that, whereas Ak(i is defined and useful regardless

of parity, A (and hence Uk ) is only non-zero when k and 9 are of the

same parity. The zeroes come from a1 k 9  for which the non-zero values, up to

k - t - 6 . are given by the like-parity entries of Table 2. (The Table has been

extended back to Z - -7 , to illustrate the identity of atk with a-X-lk when

t < 0 .Y However, a use will be found for quantities that behave in the opposite

way from atk and Aik , anticipating which we define (with bold letters to make

the distinction)

t - u. ( -t 1 1) P:, ( 0 ) /( 2 K c 9) (16)

and

a dA t e , J 9 .  ( A / p ) 
.  

a t ,e S K A f i ) ( 1 7 )

where k has been replaced by K to signify tnat we now have quantities that

are non-zero only when K and Z are of opposite parity. alf of Table 2

(for all Z ) is devoted to au. , since these quantities can be included with

atk on a chequer-board basis.
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We will require derivatives of the inclination functions. It is evident

from (10) that

dA - t( k 1) s<di1 * 1) A1 Z i (18)

from this and (10, it follows that the (partiall derivative of Alk with respect

to I is given by

At'k - JZ (R/p)t 'tk sk" 1  A - (i- k)(9. k Tk-A-i-- 1 f , (19)

where f - s. , The quantity in '(Curly) brackets is the D (ij of Ref 4. We

will also require, finally, the particular combinations of A1 k and A&

denoted by Alk and Ak , and given by

Lk - ks
"
1 Aik 1 0

-
1 A&k 1 (20)

the 3-1 and C
-
1 factors do not imply singularities, as they must always

cancel via k Atk ann Alk respectively.
The A (i) and tA (and hence the At 1  may be computed with the aid of

recurrence relations. A fixed k was stipulated in Ref 4 for the formula

(I k* Ak A(i( - (2j - 1) c Ak_ '(i) - ',(t - k - 1) Ak.2 i , (1

valid for t. k + 2 with the starting values Ak(ij . 1 and Ak,1(i) -

(211 is even valid for A - k + I , if an a-bitrary (but finite) Ak_1(0 is

assumed. However, it is usually more useful to stipulate a fixed A the

required formula wan giver by Merson
11
, being

Ak(i) - c Ak
I
li) _ ( - 1)( + k 2) Ak*

2
(i) '(22)

valid for X - 2 1 k a 0 with the starters At(i) - I and At-
1
(i) - c

(22) is also valid for k - t - I , with an arbitrary (finite) At*'(i) . Either

of the two preceding 'pure' three-term recurrence relations, (2) or (22), can be

used with JLst one 'mixed' such 'elation to generate all the relations connecting

the Ak(i) ; perhaps the simplest mixed relation (with neitner Z nor < fixed)

in
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'(Z )a. ki4 ) A
1  

Ci 2k Ak_1(lj .23)

For the 04k we have the relation, for proceeding along a 'fixed diagonal'

of Table 2 (with Z > 0 and a constant value of t -k ),

4+k-1
a4 k Uk. k a.-1,-1' (24)

whilst to proceed to a lower diagonal we have

u k (k+I
ak - -_____k_'(25)

These relations suffice to generate all the atk from 0,0 Similar

reuatlons permit the generation of all the a1k from I,0 -1 , they can be

dispensed with, howew', since it follows from (12), 13) and (160 that

au K a ' z (26)-£ £1, - - £1,

Though it is the Ak '(and At, ) that we actually require to carry through

the paper, recurrence relations are not offered for these. To preserve parity if

one suffix is fixed, it would be necessary to use alternate values of the other;

there seems little point in doing this, though a valid relation could easily be

obtained, for example by applying (21' three times. There are simple relations

between the Alk and AU , however. We will need two of these in section 7.3,

namely,

z - .&L1J 2kcs
1 A  

(27)[Uk I  Uk I  Uk

and

1,1.1-- - A 1- 1 - 2 , (20)
k+W - u4

Postscript. in regard to equations (27) - (31), it should have been noted that
A4k/Uk and A1k/uk  actually reduce to -Zo

-
o A 4.1/Uk1. and Zc

-
1I A, k uk.1

respectively, results that are implicit in the a'nalyss of section 6., the u,
factors could be avoided by allowing negative k and * (see the footnote of
page 40).

1R 890Z2
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these being true for 1 j k I X (with I and k of the same parity. For

F k - 0 we only have one relation, given by direct addition of (27Y and (28) (and

really only one, involving direct subtraction, when k - Z ); thus,

tkA,1  - - 2AZo . (29)

We could use (27) and (28) to obtain expressions for A±k I defined by

(20),, but instead derive them directly. On substituting for Ark from (14) and

for Atk from (19, then in forming Aik we find that the term in AZ(i

cancels out and we get (for 0 g k ., and Z and k of like parity)

p) - k)(i - k 1) C-1 Sk.l A 
1
(i) . (30)Atk . J, (R/P)Z atk 2(k + 1) Z

For AaV , on the other hand, the combination of Ak(i) and Ak (iy is such

that ,(22), with k replaced by k - l, is immediately applicable, leading to

(but only for 1 k I z now

A k . 2k J4(R/p)
t 

a1k o-1 3k-1 A1i(i) 31)

for k - 0 , tis would give a false value of zero, the correct result being the

same as is given by 30, since A+,0 - -A-, . The formulae (30 and (31) are

used in the analysis of 6b in section 6.2. (See also the footnote to page 15.

3 FUNCTIONS OF ECCENTRICITY USED IN THE SUBSEQUENT ANALYSIS

The term Uj of the potential, specified by C4), has now been decomposed
into the Uk defined by (15), the latitude (0, having been eliminated. The

longitude was absent from U, from the beginning, because of axial symmetry,, zo

it rea.na to eliminate the radius vector (r) . This can be done by appeal to

(6), but (as noted in section 1) we will in practice postpone the use of (6)

until the setting up of each planetary equation, so the present section is

preparatorj in nature. Further, it is not (p/r)IC
1 

, in (15), that must be

eliminated, but (p/r)
1-1 

, an a factor (p/r)
2  

is retaned to effect the change

of integration variaole defined by (71.

It is evident from (6) that an expansion of the form

(p/r)I
1  

-1 uj 3xj cos jv '(32)

J.o
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is possible, for Z Z , and we regard B j n defined by this expansion;

arly, Btj I a polynomial in e . We shall find it useful, and entirely

natual, to extend the definition of Btj to negative j , by defining

SEJ -BtljI , and to take Bij - 0 when IJI Z I . On this basis, and using the

notation of (3), we can replace 32) by

-P/r)I
'1  

B tj CO , (33)

where the summation effectively runs from j - -- to J- s- o that there is

no need for explicit smation limits.

To make use of soe results fron Ref 4, we first demonstrate that the Bzj

are directly related to the Hansen X functions of classical celestial

mechani s
12 , 

such that

Btj - &- X0 -ij %34)

Hansen's functions '(of eccentricity are defined (uniquely) by the existence of

the expansion,, for all integral Z and j ,, regardless of sign,

(r/a)l exp(Jv), - X exp(%Mm) (35)

where 1
2  

-1 and the smatton runs from -- to +- Only when m - 0

which is the case with which we are concerned, is X 
J 

a simple (finitely

expressible in eleventary functions) function of e (and it is precisely becausf

of this that we change the variable from t to v in the planetary equations,

thus avoiding infinite expansions in M ).

To demonstrate ,(30, we first replace the index I by -(9 + 1) in '(35),

and then integrate over a revolution of M . We get (from the real part of the

result

c (P/r) os jv dH - 21 q2(t+Q x6z-t,J (36)

0
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But from (33),!
S~'(l).+l cos iV dM f B ~, (p/r)

2 
c0s my cosn jv dM (37Y '

2I 2m

0 0

We apply (7) to change the integration variable to v on the right-hand side of

(37); only if m - ij do we retain a non-zero term, and in fact

2%

f cos jv dM - 2w q
3 
B tj , (38)

0

Then (34) is immediate from (36) and (38).

Some comments related to the notation are worth makJ .& before we proceed

further. In principle we are reserving the suffix k for the A functions and

J for the B functions, but ii section 5, where only the value -k arises for

J , we will naturally encounter Bk . We would also rather naturally change the

notation from j to k in (35) if we w~re following the traditional path
7 
in

which the integration variable is M and the expansion of (15 is by 35Y

directly. After replacement of 9 by -(t 1); ,, the Hansen function would then

appear as X;Z-l<
k 

, which is nowadays (following Kaula
7
) usually expressed (when

Z 1 0 as Gtpq(e) ; here p - f( - k ,: wbich must be integral (assuming t

and k to be of the same parity), and q - m - k . Introducing also the

notation Gtq , which the present author
9 
has recommended as preferable to

Otp1 , we may extend (34) by writing

q- 2M-I) Bij - X6
£'
-"

J  * Gi,i(t..j ,.j(e) - Gj,_ (e) . 0 9)

Gooding and King-Hele
13 

nave recently reported o" the G functions that are

relevant to resonant satellite orbits, Ref 13 includes the listing of a Fortran

program (by Alfred Odell) that computes the functions for arbitrary values of

Z., k and Kaula's q , by quadrature.

We can now use the identity (34) to tie into the inal~sis of Ref 4. Thus,

we may express the e-polynomial Btj , when Z Z I and 0 j < Z , in terms of

a normalired such polynomial, the connecting relation being

hj - (t ] 1) (e/2)J B(e) (40)
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A4(e) in (40) is a polynomial in .2 with constant term unity by the

normalization. Explicit expressions for the BI(e) are given in Table 3, for

values of Z and j up to 7 and 6 respectively. There is an evident

resemblance between the B0(e) and the Ak(i) , a significant difference being

that the new functions run from Z - 1 and not t - 0 ; the resemblance is not

fortuitous,, since it can be shown that4

oj(e)- a4! rL&.j. "1 +134,
2 

(se/2,-' q'-' PI.l(q-1 , (h

from which it follows that

eW - qZ-J-1 Aj.l(tan-lte . '(42)

In contradistinction with the Atk , however, it is usually much better to

work with the Btj directly (in recurrence relations, for example),, rather than

through Bi(e and (40. One reason for this is that only alternate values of

the A9 k are non-zero, whereas (for Ii < Z and e O all the B
0
j are non-

zero. Further, no difficulty arises with the gtj when j < 0 (as already

nored, and see also Appendit B), whereas B4(e would then be infinite (If

[li < V.) We can even allow Z to be negative (or zero, as well as j . The

validity of this follows from the universality of 34) - the universality is

brought out by Table 4, which lists B£ for x running from -3 to v4 and J

from -1 to -3.

The entries in Table 4 form triangular blocks of four types. First, for

> 0 and iJi < t , we have the quantities that can be expressed by (40) rhen

J 2 0 . Secondly, for Z > 0 and JI ? Z9 , we have (two blocks of) zeroes.

Thirdly, for Z S 0 and lJI S -Z , we have quantities that, when j Z 0 , can be

expressed by a formula complementary to (40), viz

B " (9.31) (e/2)J q
2
1-

1 
Bjt 1(e) 

(93)

a formula equivalent to this was given in Ref 4, the aprlication being 
'(as noted

in section 1) to secular aid long-period perturbations associated with exterior

(rather than interior) mass. Finally, for 9 5 0 and 1JI > 9 , we have (two

blocks of, quantities that are most conveniently expressed in terms of 8 (not

now denoting latitude, as previously) and q , rather than e and q , where
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no attention w-is paid to these quantities (or their equivalents), in Ref 4, there

being no appl~cation for them, but the formula for Boj is der/ed here, for

completeness, in Appendix B. (Other entries in this last pair of blocks are then

derivable frm recurrence relations. Before leaving Table 4, we note that the

formula for the X or G function corresponding to Btj Is immediate from the

Table, in /iew of ,34); tnus it is only necessary to apply the factor q-21

which introduces a negative power of , when there is not one already present

and cancELs it out when there isl

In regard to derivatives of the eccentricity functions, it can be shown (by

working from (41)), and easily verified from Table 3 that, for I S j < z

de[4Bi(e)l - 2ie-
1 (Bi-le)' - Bi() '(45)

The universal formula for the derivative of B11  is

Bj- (1 - ) Bt.1 ,j_1 - J e
1 
B1j '(46)

For I S j < t , this follows from (45); for general entries in Table 3, it can

be verified with the aid of q' and a' , which may be expresied as -e/q and

B/eq respectively. However, because we only !ntroduce the Btj after each

planetary equation has been set up, we effectively only use (46) in expressing

the rates of change of tne mean elements. Since this involves

ae(q AUA BO - q-
1 

Zk {q
2 
8ik + (21 - 1) e Btk, (7

we defln

Etk  q
2 
B - (21 - 1) e Bk (48)

then (46), re-expreased via the :ecurrence relation (56), leads to

Ekk e -
1  (

1e
2  
- k) B41k (t - k) Btk-I  . (49)
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(By symmetry, there is a parallel expreanion-o Eo M that involvesn t and

.1k- ) Table 5 given explicit expreasions for the BE , with 9X running

troa,z'3 to +'4 as in Table 4i; only the entries in which k haa the name parity

an 9. (or -V.- 1 It I9< 0 ) are useful in practice, and entriea for k. .9. (or

* -9. + I It 9Z S 0 ) are omitted entirely (for k. k 9. > 0 they would all be zero).

The Ekk9 are related to the E (e), of Ref '4 by

El e-
1 
(e12)

9. 
(9. - 1) Ek(e) (50),

when Z> 0 ;tor Z9. 0 ,the extra tector q24+1 in required (of (443), where

the additional factor, In relation to ('40), ia q
2
Z
.1 

i

The B~ nay be computed tree recurrence relationa for the 81(e) , which

will now be given, but in developing the theory It in more useful to have such

relations for the B9.3 themnelves, no thene will alsc be given. For fixed

90), the recurrence tormula (trom Ret 14) in

(9. + 1 0 BI~ (e, - (2t. - 3) Bi-, - (Z. - 3 - 2) q
2 

BJ_2(e) (1

valid tor Z. Z. J 3 with the ntarterns~1'e and BJ,2(e) both unity. For

tixed t. C Z 3), on the other hand, the tormula is"

81(e) - B4
1

(e) 'a (9 7 1- 2(). 1) el B
4 2(e. (52),

valid fcr .-39 3 9. Z0 with the ntartern B'_'(0 end BI-
2
(e) again both

unity. The resemblance ot (51) and (52) to (21) end (22) respectively tollows

trom the remark leading up to ('42).

The recurrence relations for' the B9.3 , that correnpond to (51 ( and (52),
rea pectively, and are valid for all Z. and , are (when symmetrically

expreased)

9.(9 - 1) q2 B L- 1,'j - t(2. - 0) B9.3 + '(t.2 - 32) B9.,1, ' 0 '(53)

and

Q aBtj- +2jBj Q+ ) B~ l- 0; (54)
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the mandatory symmetry in (54), to satisfy the unchanging value of Btj under (1

the operation J - -j , is evident.

As remarked for the Inclination functions, either of the 'pure' relations,

(53) and (54), can be used with a 'mixed' relation* to generate all tte

recurrence relations connecting the B Here the mixed relations are, in

particular, those that connect three out of four of the B zj lying 'around a

square' of index duplets; if the square consists of the duplets (t, J),

(t - 1, J), (Z, j - 1) and (t + 1, j - 1), then the four mixed relations

connecting them '(all of which we shall require in the sequel) are

t B - (z, - J) S+, * le B,j+l - 0 , (55)

iq
2 
B8j - a J), B+I j + (i + J + 1 Y e Bt,+1,j+ - 0 (56)

te Bj + z Bj- 1 - ,(z + J + 8 ) BL I J+ I - 0 ,(57)

and

(Z - j) e B i,j + Zq
2 

8 -,j+l - (I + j + 1) Bi+l,j+ I  0 (58)

If we re-order the terms in the last two relations and replace J by J - I , we

get relations which are symmetric pairings of (55) and (56)', viz

z Bj - (a J) Bl.i,j + I e Bj_ - 0 (59)

and

tq
2 B j - (t + j) B1+1 j + (8 - 1), e BZ.l,j- 1 - 0 . '(60)

Of this set of relations, (55) and (59), can be obtained at once from (54) and the

relation equivalent to one give% ',(for the Hansen functions)' by Zafiropoulos
8
, viz

ie '(Bt,1. - Bt,j+i) - 2J 88,I.J  (61)

this is of a different 'shape' from our triangles-around-the-square relations,

but is perhaps the simplest recurrence relation of all.

Note added in proof: Ref 19 indicates that, for inclination functions, pure
relations are computationally prefer-.ble to mixed relations (see also Ref 20).
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4 IATES OF CIANGE OF OSCULATING ELEMENTS

In tnis section we use Lagrange's planetary equations to develop the rate

of change of each of the orbital elements (a, e, i 0, w and M) due to Uk , the

term of the disturbing function specified by (15). Each rate of change is to be

with respect to v , rather than t , expressed as a finite trigonometric series

(assuming Z > 0 , as we now always do, except in section 8.1), with v as the

va-iable. The v-independent terms of each d /dv are then isolated; they

effectively contribute to the time rate of change, ' , of the mean element,

Z expressions for the t being held over to section 5. The remaining terms of

dC/dv can at once be integrated to provide contributions to the short-period

perturbation, Sr . The result of the integration is, in fact, so 'immediate'

(apart from the 'uestion of the integration 'constants' already referred to in

section 11 that we will not bother to write down formal expressions for the five

it other than 6a ; this is to emphasize the fact that it is the combinations

of the 6 into 6r, 6b and iw that are of interest (being the topic of section

6) , not the 6 themselves.

The perturbation 6a is a special case because it can be obtained without

integration. As in Part 1, however, we also derive da/dv from the appropriate

planetary equation, as a prototype for the derivation of the other d;/dv . By

bringing in the quasi-elements, ) and p , it is possible to develop each

equation in terms of the partial derivative of Uk with respect to a singla

quantity.

4.1 Semi-major axis

As in Part I, there is an absolute constant of the motion, which we denote

by a' , such that

a - a' ( * 2aU/) (62)

this is an exact relationship for any time-independent disturbing function, U

and in particular for the axi-symnetric Uk . It follows that there is no long-

term variation in a , to whatever order of magnitude the perturbation analysis

is conducted. Further, the short-period perturbation, ia is given exactly, on

substituting for Uk from (15), thus

6a - 2a'q
-2 

Ak (p0r)t C . (63)
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This does not mean that an exact perturbation can be written down for semi-major

axis, however, as the right-hand side of (63) is expressed in terms of osculating

elementr- as soon as mean elements are introduced, the result is no more than a

first-order perturbation expression, as with any other ; .

C, To present 6a in the form appropriate ior use in section 6.1, we combine

Swith one of the factors p/r Thus,

6a . -aq-
2 
Ak (p/r)t (eC~k 2C eCl) .k) (6

We retain another p/r factor explicitly, and expand the remaining (p/r)
t 1  

by

(33). By this means the term 
2
C
0 

, for example, in (64) is effectively

transformed, f'or each J ,into * C_ . But each pair of terms '(such as

this) for positive J , in the infinite summation of (33), is matched by the same

pair (in reverse order) for negative j , so we can express the result of the

6a - - aq
"2 

Atk (p/r), B B1j (eCj.I + 2Cj + eCj+I ) . (65Y

We now develop an exprcision for da/dv ab initio, using the general

procedure that involves the planotary equation for & . This equation is

da 2 3U
dt mra T (66)

and on substituting for U
k  

we get

da -2naq.
2 
Au M(p/r)t* CO) 6-t

The M-differentiation is immediate, since p/r is given by (6) and 3v/IM is

q-3 (p/r)
2 
(of (7)). We transform from dt to dv (again using (7)), and all

this leads to

d aq
"2 

A 9k (p/r) IN - t - 1) e S.1 + 2k So + (k * 1 * 1) e S1} . (68)
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Finally, we split (plr)l into (p/r)
1-1  

and p/r then, applying (33) and

taking advantage of the matching of terms for positive and negative j , we get

da .q-2 A B {(k - -1) e2s 2(2k-1 ), 1

dV Lk I j -Je .

+ 2k(2 + e
2
) Sj - 2(2k Z I * 1) e Sj I + (k + I ) e

2 
SZ 1 . (69)

This may be regarded as a prototype for all the dt/dv ; in addition,

(69) is used in the derivetion of de/dv in section 4.2. The equivalence of

this result with the v-derivative of da obtained by the special procedure may

be verified, most easily by the v-differentiation of (64).

In dealing with the subsequent C , we will be isolating the component of

di/dv that leads to secular and long-period perturbations. We know that for

da/dv this component must be zero, both from the special procedure and from the

form of (66) (since a term of U that is free of short-period variation must

tautologously have zero M-derivativel, but it is instructive (as part of the

prototype for the other € Y to obtain this result from (69). The terms

independent of v in the overall J-sum are the terms in S.k S k Since

st,_j - a,, the combination of all such terms involves the factor

(k - Z - 1) e
2 

Bt,k-2 * 2(2k - L - 11 e Bt,k-1 * 2k(2 . e
2
) Bk

2(2k Z I + 1) e Btk1 * (k + Z + 1) e
2 

Bi,k+2,

and it follows from three applications of (54), that this is zero.

4.2 Eccentricity

We develope the perturbation in e by first obtaining the perturbation in

p ,, since

-q
2  - 2ae~ (70)

and the planetary equation for p is just

at ' (71)na 3w2
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On substituting for U"we get

-- 2naq-
1 
At (p/r),'*

t 
-(COY (72)

Transformation of the integration variable to v by (7), yielde

dv-2kp Atk (p/r)Z (73)

hence we gat, from MY3 and the usual argument concerning positive and negative

dv 2kp Ati I St S (74)

We get the long-term variation by setting j - -k thus

p . 2knp Ath BLk S.I< (75)

The expression for * is now Immediate from (70Y, since 0 but it in not

given here, as the complete list Of the is given in section 5.

For the v-derivative of the short-period perturbation, Se ,*we have all

the terms wkth ,j - k - 0 in the expression given by the combination of (69) and

(73), according to (70Y. This combination leads to

dev At ((k -t-1)e S -2(2k - t -)Sj..1
6be S~ * 2(2k + w )SJ.1 * '(k w Z w I)e S . (76)

As already indicated, we will not write down the expression for Se

Involving C i _2 etc, given immediately by integration of (76); Immediate, that

is, apart frcom the 'constant tars-, In C..k ,tnat we sre not yet in a position

to assign. This term effectiveiy replaces the infinite term (in C..b I that

would arise if we had not removed the S-k term from '(70 in advance.
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4.3 Inclination

We can develop the perturbation in i from the perturbations inpan

pa
2
, sincepan

d(pc
2
)/dt _ 0

2
p - pes (77)

and the planetary equation for pa
2  

Is just

1 ML2  . 2q-C OL (78)
dt aa

But 1Jk is independent of longitude, and hence of il so pc
2 
is an invariant.

Using (77), therefore, we have t at once from (75), whilst di will be based

on the expression for di/dv derived from (74), viz

di - c~ A0 '(79)

(Since At contains sk as a factor, there will never be a non-zero multiple

of an uncancelled s-1 .

4I.4 Right ascension Of the node

The perturbation in Q omes from the planetary equation

dO au (80

On substituting for Ut we get

h - nq-
3 
s-1 (plr)' Aik CO '(81)"

tWe r.,w apply (7) and (33) as usual, getting an isolated contribution 
to

tgether with the enpression for dQ/dy viz

*LQ s-1 A~k BQ, CJ~ (82)
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4.5 Argument of perigee

S"Introduction of * gives us a one-term planetary equation, since

dt na
2
e 3e "(83)

The e-derivative is much the most complicated of the partial derivatives of

U aince e is an argument of each of the four factors on the right-hand side

of (15). Thus we get

* " -ne-
1 

q -Ltk q-
2 

(p/r),t CO}. (84)

But

.i. (q-
2 
At, - 2(t * 1), eq

4 
Alk (85)

req

and,, using the expressions for Zr/le and av/De (equations (41) and (42) of
art 1),,

e 1 ' p/r), ' * C l - q-2 
*p/r) ' 

1  
[( + 1)(cos v - - e s n2 v C

Te Cf2 q '(/rt Cos v Sn1
- k sin v '2 * a 003 v( S } ,, (86)

so that (8) reduces to

- ne'lq
3 
Alk (p/r)t 1 (k s(n v (2 + a cos v) So -

(i 1Y cos v (I + e cos v Col (87)

We make the standard expansions of the trigonometric products in (87), and

then apply 7) and (33) as usual. This leads to

dv "- 
e-
1 Alk I BIJ 1(t + I - k)e CJ. 2 - 2(" + 1 - 2k)Cj. 1

+ 2(t + 1)e Cj + 2(1 + I * 2k)Cj+1 . (I + 1 + k)e Cj. 2I (88)
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To get , we pick out the coefficient of C-k . Thus

- - ne-
1 
At, {(I * 1 - k)e B9,k_2 - 2(t + 1 - 2k)81,k. I

+ 2(t + 1),) Bik + 2(t + 1 + 2k)B.,k+1 + '(t + 1 + k)e B£,k+21 C-k • (89)

But this can be simplified by three applications of (54),, which lead to

- ..-2 19. {(9e
2 

- k)B. k + (. - k)e B£,k-. I C.k . (90)

We can now introduce the quantity Etk I to get a concise expression, since by

(49) we have

- -ne
-1 
Aik 9.k C.k• (91

To get 6 and the appropriate terms of dw/dv , we combine (910 and (the

residLal terms of) (88) with and (82), respectively, using

- - c . (92)

4.6 mean anomaly

We start by studying p ,. since our final cne-term planetary equation is

ii 2 U
dt na Da (93)

Remembering that 9k , in , is itself a function of semi-major axis, we

obtain

- - 2(t + 1)nq
"2 

(p/r)
+
' Akk CO  '(94)

and hence

do__
dv 2(Z. - O)q A.  I Btj Cj , (95)

In particular,

- -2(t + 1)nq A&k 9 C.N k  , (96)
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and from (910 we therefore also have

S- -nq At. 12(t * - e
"1

E
k
i CE k (97)

since

a * pq~. (8)

From (88), similarly, the v-derivative of So is given by the v-dependent terms
of

do e-q A01  B {( * 1 - k)e C + 2(t 1 1 - 20C

- 6(t + 1)e C+ 2(t + 1 + 2k)Cj+1 + (j + 1 + kde CJ21. )99

But

- +*f, (100)

where (with T standing for time)

t

- J n d O(101),

0

and (assuming only U21  to be operatingy

n - n' - 3nq
"2 

Ak (P/r)
i 1  

0 (102)

by (63) and Kepler's tI-!rd law.

From '(101) and (102) it follows that

df n'
df * ,3q Alk I Bj Cj, (103)

by the usual procedure. We may then write

- n' + 3nq A0k B~k C. k , (104)
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from %hich A is available on combining with (97). Finally, on combining the
residual terms (those with k + J - 0 of (103) with (99), we find that the

v-deriwative of 6M is given by the v-dependent terms of

dM
dv +eq A Zk I Bj J( + 1 - k)e Cj.p 2(t + I - 2k)Cj I

- 6(t - 1)e C1 + 2(1 + 1 * 2k)Cj+1 + (i + 1 * k)e CJ+21 005)

To conclude,, we note that a very much simpler result than (105 is

available for the non-singular 6L . Thus from (88) and (105) we get

dv - (2t - 1)q Atk IB Cj . (106)

5 SECULAR AND LONG-PERIOD ELEMENT RATES

In this section we collect the expressions for the rates of change of the

mean elements,, i.e. the t associated with Ok . As we have seen in sectiont . s w hav sen insecion4,

this simply amounts to listing the components of the dC/dv that are multiples

of either S% or C , . When k - 0 , the rate of change is secular; for

k > 0 , it is long-period. We shall not be concerned with the build-up of actuai

pertuk'bations from the , since this is fully dealt with in Parts I and 3;

suffice it to say that there is no difficulty in the secular perturbations, but

that (even in a first-order analysis) difficulties arise with the long-period

perturbationa, in particular due to the singularities associated with zero e and

zero 3 ,

Another point must be mentioned before we list the t . As the expressions

arise from terms in dC/dv , but were t-eated (in section 4) as if from terms in

d /dM , each ; produces a hort-period component of the perturbation in c

i.e. a contribution to 6i is induced. These contributions may be amalg&mated

into components of 6r , fb and Sw , as done for J3 in Part 1 '(section 7).

The issue relates to the definition of semi-mean elements '(section 3.2 ibid),

which is outside the scope of Part 2; it should be cl3ar, from equations (120) -

122) in section 6, however, that no difficulty arises in the amalgamating.
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In the list of the t that follows, we note that the maximum value of k

Is t - 2 , since B, - Eli , 0. We attach an explicit subscript (1k) to each

then our first result is

*lk " 0 , (107)

For e , it follows from (70) and (75 that

*tk 
=  

kne'lq
2 
Aik Btk S-k " (108)

There will always be a positive power of e to cancel the factor e-
1 

, it will

be noted, coming from k Bk

For I , similarly, it follows from (751 and (77) that

t k " knC-1 Ak Bik $% • (109

Here there will always be a positive power of s , coming from kAk ' to cancel

the factor s-
1

For 0 , our analysis of (81) gives

3 tk - n A&< Bk C k . (110)

The formula is expressed in this way, with a factor s on the left-hand side, to

avoid the possibility of an uncancellable s
-  

on the right-hand side. For

long-period rirturbations, there is a singularity difficulty here., which can be

dealt with 3s indicated in Part 1 (section 3.50. For secular perturbations (and

here is our first ran-zero c when k - 0 ) there is no problem, since in the

expression for Aik , given by (19), Ak(i) appears with the multiplying factor

k ,, and A*l(I with the fa tor f

For w , we use the final result, '(910, for Then from (92) and

(110) it follows that

es d - n(ec A k B'k - a A& Elk) Ck b (1110
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Again the formula is expressed like this to make the right-hand side non-

singular; and again (because Elk contains a factor e when k - 0 as seen

from Table 5) there is no difficulty with secular perturbations.

For M , we combine the results for t and 7 - n' , given by (97), and

(104) respectively; thus

a *1k - nq Alk {Etk - (2t - 1)e B~k} C~k . (112)

From (48), this may also be written as

e * nq
3 
Aik Bik C~k . (113)

From the definition of L , we may also combine (112) with (91); this gives the
non-esingular result

tk - (21 - 11 nq Auk Bzk C-k . (114)

As usual, a factor e can be cancelled fros both sides of (113) when

k 0 . However, there is a simpler way of dealing with secular perturbations in

M , as indicated in Part 1; Ref 3 was largely devoted to this topic, and the

rest of this section conforms wth the account therein.

The basic idea is that we represent the secular perturbations in mean

anomaly by modifying the value of the mean mean motion. In view of (113), in

fact, we write

IT - n'(1 - e-1q3 I A , (115)

where the summation is now on I , and we have set C0  to unity. This a 'eea

with equation 110 of Ref 3, since At,O here may be identified with

-J Ct(R/p)tAt(i) from that paper.

The logic for using a' a mean semi-major axis (W is, as we have seen,

compelling, so if 1 . n' , we do not retain Kepler's third law in its simplest
form. This is of no consequence, however, and we simply write, from 0115),

11
2
X
3  

u(1 
+ 
2e'lq

3  
A O 8 4 (116)
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Ref 3 gives, as equation 15), an explicit version of (116) with (even)

values of t up to 8; the two versions can easily be verified as equivalent if -;

we note that Q, (In Ref 3) is just a normalized form of B',o such that

8ZO - (t - 1)(t - 2)eQ, . (117)

The following recurrence relation was given in Ref 3:

this i. valid for Z. Z , with 02 - 0 and Q3 1 . The relation may be

obtained from 017( and '46). together with

(L - M)t% - 3) B£_, - (L 2)(2Z - 5) BL-2 ,1

- )( - q2 BE.3.1 X119

which derives from 53) on replacing ,(t, J) by (1 - 2, 1).

It is very convenient that Q2 - 0 • It means that for first-order

analysis associated with J2 (the dominant harmonic of the geopotentialO IT is

the same as n' .

6 PERTURBATIONS (SHORT-PERIOD) IN COORDINATES - GENERAL CASE

In this section we develop general expressions for the Or , 6b and Ow

that can be derived from the first-order 68 via the formulae (taken from

section 3.3 of Part 1)

6r - (ra a - (a cos v e -(aeq
"1 

sin v M ,(120)

6b - (Cos u') 61 - (S sin U') 6n 121)

and

6. - 6,0 (q-
2 
sin v (I - p/r)) 6e * q-3 (p/r)

2 
6M . (122)

Special cases (derived from the choice of integration constants in the 09 are

reserved to section 7, bit in counting the number of terms associated with the

general Ut we have regard to the basis on which these constants are chosen.
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The 8; are available at once as the v-integrals of the expressions for

d /dv in section 4. Generation of the expressions for Sr and 6w is

essentially straightforward in that the analysis starts with the 6i due to Uk

(which 6i we can denote by 
6
;
t
k )' and finishes with 6rtk and Wk . With

b , however, there is a complication, due to the appearance of u' in (121), as
opposed to v in (120) and (122); as already noted in section 1, we deal with

the difficulty by deriving 6btx , rather than 6bik .where K has values of

opposite parity to those of k .

We do not give expressions for 6r , ib and 6w , but (as is clear from
Part 11 these are immediately available from tne expressions for r , 6b and

6w , just by replacing Sj and Cj by (respectively! (k - Jj F Cj and

-((k + J) f Sj . We can do better than this if we allow for the (overall) rate of

change of a , replacing (k + j) F by (k + J " 
+ 
k assuming Cj and $j

still to be shorthand for C- and Sk

6.1 The perturbation ar

We have to apply (120) with 6a Se and 6M given by ',(65) and (the

Integrals of ',(761 and (105). We find that the integrals combine in a very

natural way, as a result of which we can write (with 6r short for 6rik

Sr- (rla) 6a - + a A k I tj {s +k -2 ku<*cj - 2 Ic- "T J, ;< *. ) II

2[k-tZ- I 2k. + t- +c I C *il k +1C .'13[' - kJ- 1.:f * e c I * J k + 2 k(123) II

The simplest way to incorporate (65) is to note that this can be decomposed

intu

dk + 3 -2 V I+tj J-i

2-2 Ic + j 1 -__-e_+ + - ',(124) _

k J- + 1 2 e3 j * j k+ j ] + J) 
"

By this trick, we can combine '(123) and '(124) at once, to get, say,,

ir - a Atk IStj 1 , ,(125)
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where Rj (or R~kj  to display all the index parameters) is given by

Rj - e(j + I - 1)[l - 2 k 3 J-

+ 2(2j - 2 - Z + 1:J

+ e(j - 0 1)t.- -- 2JC 1 . (126)

It can be seen that (1251 is a sumation in which Rj , as given by 0260,

has three components; each component is expressed as the ss of two multiples of
the same 'C quantity'. Let us separate the first multiple from the second 'in

each component of Rj ), feeding them back separately into the summation of

(125), so that we have two distinct summations that we can denote by E- and

E. , Thus E- Involves E Btj Rj_ , where

Nj_ - tJ- ----- eCj. 1 * 2 -- C:1 1 3 ~ Z.!e (127)
J I+ L 1 j eCj+1

Now we have seen (in section 3) that all sums over B~j can be regarded as

running from -- to - . It follows that we can rearrange the three sets of

terms in EB j Rj. such that (with J now used in a different way)

Z B1j Rj. = (k + j - 1),-1((j I )e Btji 1 + 2(2j + Z - I)Btj

+ 3(J - )e Bt,j1 1ICj (128)

We now invoke the recurrence relation (54) to eliminate B1,j 1 , so that

the quantity In curly brackets in (128) becomes

2(j + t - )BZj + 2(j - i)e Bt,j-

and then simplify further, using (58) with both Z and J reduced by 1, to

reduce this to 2(1 - 1)q
2 
BLI, j  (We get the same result oy using (54) to

eliminate B11.1 first, and then simplifying further via (56)J Thu

Btj Rj. 2( - 1)q
2  

(k + J - )-i Bt_.j Cj . (129)
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Similarly,

B Sj Rj+ - -2(1- 1)q
2  

(k J 1)
-
1 BZ..,j Cj. (130)

The final result we require now follows from (125), (129) and (130).

Because of its importance, we write Cj in full. Thus

I

6r1k - - I- ( pAk +(k I )(k +J - 1B1S-1,J cos (ku' - jv) . (131)

Equation (1310 provides a general formula for 6r due to Ut , valid for

I Z I . (This restriction on Z has been operative from the beginning of

section 4.) In view of the fact that k only takes non-negative values of the

same parity as i it should be noted that j takes all values,, but with

BI j  only non-zero if 1JI 9 £ - 2 . (This applies if t Z 2 but the case

t - I is trivial because there is an overall factor Z - 1 Y'

If j - - k 1 1 , there is a zero denominator in (1310, and terms with

these values of j must be excluded from the formula; they are associated with

the terms In d;/dv that were hived off in the generation of the t , In
section 7 we shall determine constants for detk and OMRk such that the terms

with these two values of j are forced to zero. It will be noted that all the

cosine terms occurring in (1311, for a given Jt and all possible k , are
di3tinct, except that if k - 0 (1 even) then equal and opposite values of J

lead to identical terms in co3 Jv

We use the remarks in the last paragraph to provide a pair of formulae for

Ntr , the total number of terms required to express Or for a given value of

i . One formula applies when t is odd,, the other when t is even. In both

cases the number of J values for each k (regardless of the excluded values, if

any) is 2 - 3 , if t 2 2

If 1 is odd, there are J(Z - 1) possible values of k , so a priori the
value of N

T
ir is 4(t - 1)(21 - 3) , if I Z 3 . But this must be reduced by

the number of excluded values of the duplet (k, J) . If k - Z , j cannot be

-k ± I , so there is no value to exclude. If k - 1 - 2 ,, J car, (a priori) be
-k - 1 and this value must be excluded. If k Z -4 , it will always be

necessary to exclude both -k + I and -k - I . Thus the total number of

exclusions is Z - 2 . Subtracting this from the a-priori value, we get

tR 89022
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NIir . 02_(31. 1) . (132)

Values for t up to 15 (including Nir - 0 , which is the correct value, even

though the above analysis only applies for t 1 3 ) are given in Table 6.

If I is even, there are It - 1 possible values of k , so a priori the

value of NZr is (t + 2)(2 - 3). The exclusions are as recorded before,

amounting to Z - 1 now if k 4 , but it is also naturale for Nir not to

count the 'duplications' that arise when k - 0 ; there are t - 3 of these

duplications if Z 4 , viz for 2 1 iJI t - 2 (we cannot 'discount' for

J{ - 1 , since both values have already been 'excluded'). Thus the total number

of exclusions is effectively increased to 2i - 4 , aid this is the right number

even when Z - 2 (not covered by the argument that applies for Z 4 only).

Subtracting this value from the a-priori value, we get

Ntr - X2 - +(3 - 2) . '133),

Table 6 gives values for Z up to 16. It is remarkable that, as a result of the

discounting of the duplications, we have a formula that is so close to what the

improper use of (132) would give, the value by 0133) being larger by just .

Further,, if we did not discount, the formula for Z 4 , viz Z2 - (t - 4)

would give 1, instead of the correct 2, when X - 2

It is noted, in conclusion, that, due to the multiplier (r/a) of Sa in

(120), it would not be a simple matter to null the 'constant' terms of 6r with

a choice of Z # a' , but that in any case we would prefer not to make such a

choice. Further, the constants in 6a and 6r are not the same, partly due to

the multiplier of 6a referred to, but mainly to the way in which the terms in

Se and 6M combine. For even X , we will have, in particular, a coefficient

of CO (. I) equal to "a - 1)pAL,1 BI, 0 . (See (159 for the constant in da.Y

6.2 The perturbation ab

We get 6b from (121), where 6i and 01 are given by the

integrals of (79) and (82). This is on the assumption that Ob (- 6bk) is
associated with Uk ,, following the decomposition of U, by (5). We shall

shortly find, however, that it is much more convenient to decompose the total

In software in particular, we would rather double a computed quantity than have
to compute it again; in the general analytical formula, (131), however, there
is no easy way to indicate a special situation when k - 0 and j * 0
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8b (associated with U) as XA6bjw , where the summation Is for values of 1K)

that are of opposite parity to t and we no longer associate the individual 6b

(- 6bt) with specific components of U

In relation to Ut k we get

6b ~ k _ -~ { kc'1 + I '. 1j

The trigonometrical products can be replaced by sums,, in the usual way, and we
can then invoke the notation of (20) to write

Obik " " Bj (k + J),-l(Ai Ck
"1 

+ A-k Cj
+
) . (135)

This expression may be contrasted with (125) and (126) for Or . In view of the

difference in superfix, as well as suffix (which alone varied in the terms of
Rj 1, in the two C terms of 135), we would now like to combine a pair of terms

with different k indices, before the summation over the J index operates. We
note that Atk and Aik , though under the summation sign in '135), are actually

independent of J

With the philosophy just referred to, we make the new decomposition

Obi . I 6b K (136)

where each 6b ',(- 6b U is of the form

6b - Tj Bij C" 137)

and we require an expression for Tj (or Ti j to display all the index

parameters). We note first that since '(for non-trivial resultsy k runs from 0
or I to t (taking alternate values(, it follows that,, in principle,, K runs

from -1 or 0 to t + I (again alternate values, but of opposite parity to k):
for the minimum value of K , only the term in Atk , in (135),; contributes to

Tj , whilst for the maximum value of K , only the term in Aik contributes; for

intermediate values (if any), both terms contribute. But we can straight away

dismiss the 'maximum value' (< - Z - 1), because Att is just a multiple of

at ; from this it follows that AjZ , defined by (20), is zero. (Also Btt - 0

anyway!) We shall find that we do not require the 'minimum value' (K - -1)

either.
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To evaluate Tj , in general,, we use (30) and '310 for Aik a.d Atk '

respectively. It is fortunate that we require the first with k K - 1 and the

second with k - K + I , since this means that we pick up the same inclination

function, AK(i) ,, for both; moreover, it is aesthetically satisfying to have a

direct application for the inclination functions for which subscript and

superscript ee of opposite parity, as opposed to merely an application in the

propagation of like-parity functions*. We have

it { + 1 (Z - + 1-I + 0,- .(R/P)4 s" Af(i) . (138)T+4( + j - 1)

The quantity in curly brackets in (138) is , pure constant, in which the

aik are given by 12): thus the first a involves P*(O) and the second

Involves P-1(0o), these being given by (13). By relating these to PK,1(0)

we may express the aforesaid quantity (after some algebraic reduction) as

0 t-C*i pC 1(0) f uK,; _ OC.1)

But P ,(O is related to GtK by (16), and thus to AbC by (17). Hence

(138) gives

Tj I Ll_- (139)*T l

The prece4ing is 'general' in that it applies for 1 S K Z Z - 1 (or, more

precisely,, with 2 as lower bound when t is odd); further, if C Z 2 we can

obviouslv cancel the three appearances of u . We still have to cover the cases

< - 0 (1 oddY and K - -1 (1 even,, In which (in princlple only the first term

in curly brackets is to be taken. To count only non-zero terms when Tj is

substituted in (137), the restriction on j is that J I 1- 1 (of an upper

bound of t - 2 in the analysis for r ); we shall be exoluding the values

j C K 1 , of course.

This strengthens the view (noted in other papers, and in section 8 of Ref 13

in particular) that V (of either parity) is a much better index parameter than
Kaula's p (where 2p - t - k , referred to iv section 3 here). When theanalysis includes the tesseral harmonics (Ref 9, and see Appendix A here), k

takes negative values (with Akl 1 t ) as well as positive, but the factor uk
in (12) is not required.
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When K - 0 , we require just 2/(j 1) from the curly brackets in (139);
but for each J > 0 , half this quantity may be combined with half the corres-

ponding quantity for j < 0 , to give /(J + 1), + 1/(-j + 0) , which can be

rewritten as 1/(J + 1) - 1/(J - 1. It follows that (139), with the three

occurrences of u deleted, again gives the right results (counted separately for

j > 0 and j < 0). The modified formula may be seen to apply, finally, for

j-0.

When K - -1 , the position is more complicated. First, the expression by

(139) is not even legitimate now, since At, is not defined for K < 0 ; the

illegitimacy arose in the substitution for Atk , since (310 does not apply when

k - 0 . But (20) indicates that At,O - -Aj,0 ,and this suggests that we can

relate the required term, involving ux+1  with < - -1 . to the te-m in u,_1

when K - 1 . Since C31 - Cjj , the relating will involve the transposition of

positive and negative values of j , and this is also necessary to identify

for K - -1 with u,_I/(c+J-1) for K - 1 . In short, we can

deal with K - -1 just by doubling the second term in curly brackets in (139)

that is associated with K = 1 . This means that, yet again*, we get the "ight

result from e139) if le cancel the three appearances of u

We can now write down the final result we require,; on substituting (1390

into (137) and expressing CK in full. Thus

Sbtu - - I AU, ( * J I)( * J - ) Bj Cos (ul - Jv (lAO)

As already indicated,, this formula is unlike 1310, the corresponding one

for Or , in that it cannot be taken in isolation as relating to a sub-component

of Ut . It is like (1310 in one respect, however, in that terms of OUb£ with

J - I are excluded. In section 7 we shall determine constants for Oik

and 6
0
tk (k . not < , now being the appropriate symbol) such that these terms

are forced to zero.

* The universality of thip procedure (cancelling the u ) stems from the
original introduction of UK into the definition of ojK . If we dispensed

with this factor, but used positive values of K as well as negative ones
(see also Appendix A), then we would find nothing special about the ialues
t1 and 0 in the first place.

TR 8902?



42

We proceed to obtain a pair of formulae for N1b the total number of

terms (without duplication of Cj ) required to express 6b for a given value of

Z Whether t is odd or even, the number of j values for each K (not dis-

counting exoluded values) is 2Z - I , correct for all 1 (9 1) this time.

If Z is even (which we have seen to be the ismpler case), there are 49

possible values of K , so a priori the value of Nib is +L(21 - 1i . When

Z * - I ,, J can be -K I but not -K - I , so there is just one value to

exclude. For all other K , values of K 1 1 are both possible, so the total

number of exclusions is Z - 1 . Subtracting this from the a-priori value, we

get

Nib - 12 - +(01 - 2), . (141)

Interestingly, this is the same as Ntr given by (133). Values for Z up to 16

are given in Table 6.

If t is odd, there are (9. * 0, possible values of K , so a priori the

value of '
9
b is 4(1 - 1)(21 - 1). There is again a single exclusion if

- I , and two otherwise,, so there are Z basic exclusions (assuming

Z Z 3 ). In addition,, however, there are I - 2 duplications when K - 0 , and

these can be discounted for NIb (though not for 3b itself - see also the

footnote in section 6.1), so the effective number of exclusions is 2Z - 2

this value applies even when k - 1 . Subtracting this total number of

exclusions from the a-priori values we get

N ib - L2 (- i, '(142)

which is one more than for the corresponding N Ir Values for I up to 15 are

given in Table 6.

In conclusion, it is worth remarking that if the planetary equations are

used in Gauss's form, as opposed to Lagrange's, (and this is done in Ref 8), then

the resulting form of the expressions for di and 69 is such as to provide an

easier route to our 6b (With K , rather that k , effectively involved from the

outsetY. For both Or and 6w., however, the approach via Lagrange's form of

II
the equations is much simpler.
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6.3 The perturbation 5w

The analysis for 6w is much more like the Ar analysis than the 6b

analysis, because each U
k  

can again be treated separately throughout. There

are two complications, however. First, (122) effectively involves cos 2v and

sin 2v , not just cos v and sin v (we see this at equation (143),, following),

and this means that the values j - -k ± 2 are special as well as j - -k ± I

Second, we cannot take Sw to be zero for any of these special cases, since the

constants in 6e and 6M must now be assumed to have been already assigned,

formula for the four special 6w will be obtained in section 7.4. Actually,, a

fifth special case emerges, corresponding to J - -k and a zero denominator

k - J ; 6w for this case can be set to zero, since we still have (for each k)
the constant in u ,, as yet unassigned,, available for the purpose - the

constants for AU are determined in section 7.5.

We start by rewriting (122), as

6w - 2q-
2 

',(e sin v - eq
- 1 

AM Cos v),

jeq" 2 
(e sin 2v + eq-A 6M cos 2v' + + e2q"3 

6M + q- 1 
6L , (143)

where 6e , 6M and 6L are available from the integrals of (76), (105)' and

(106). The Integrals for 6e and 6M combine in a very natural way and we get

2q-2 '(6e sin v - eq-
1  M cos v) +q-2 Alk I 8Bj {e k - -

+3 3. i 2w Z + k 11 : 2k± . I * 2k)S< 3 j )Si-1 + k + J - I k + J + I3S

e3 k 1 k I++ 7}75

jeq
- 2 

(Ae sin 2v eq
"1 

AM cos 2v) - J'eq
- 2 

AU 2 BIJ

13e1-t -k 2 +Z+2k s 1+ t+k+ 1+£- L k

*21 + -2k e - i-k
2k +-- j-- 1 -i + +1 + 3e + j 'J+2) ,, (145)
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T e2q 3 M feq-
2 
Ak IBsj jea k sj.z2

1-2k +

21 t +2k S 1 +* +k s }146Y
k + j 

+  
k +j--2 SJ+2J

and

4-1 5' - (1 - 20, Aik I B1 - SJr .(147)

We substitute the last four results in (143) and at the same time (as in

tbe analysis for 6r change the interpretation of j so that we can use the

same Si in each term. This leads to

.2 Z 
+ 
k 211 k I +

L -  
k),

S
4
q A& I k j 2 ,- J+

(1 - 2k 6 1e - +k 3 1 + i- 2k
k + k + k k+ k +

+ k + -1 , 2 1 + Zi k 1 + +2k2 J+1 + 7+ k + -k+-J

+ 2 4(1 - 2Z + e2(5 - )+ 8 + Z 2k + e2 1 -, - - ki
k*+J k +J- I k ] - -7 J

2e2 + Z+ k +31 +t,+ 2k +61I - -k + + t-2k]
7 +e -+ k + j _ -J-j~

+ 3e211 + X + k +I - Z S '(148)k -e j k + 2 Zj ,J _2 1 j •' I 8

Though the algebra is tedious, we can now eliminate BLJ+2 and 8,J_,

by the appropriate versions of (54). If we express the result as

6w - jq-
2 
Aik  I Vj, 1 B i * Vj, 0 Btj  + Vj,.. 1  Bj,j.) Sj ., (149Y

the fo-mulae for Vj,I , Vj,0  and Vj,., are initially very complicated. For

Vj, * in particular,, we start with

3tek'1 k- 4-.2 + 6(4-1.1+12e ( 1)(k +'J 72) k +j +2 k +J + I
3( - -) 3k 2(k41-1)}

(j +z +1 )(k . J) k+J ' k I-
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Vj,._ is symmetrically related to this, but Vj 0 is a great deal more

complicated. All three formulae can be greatly simplified, however; for VJ,0

this was done by a technique akin to partial fractions. The resulting

expressions are

Vj, - 2e( ) +J 2 k 6 3 2

k + + I - k j - 150)

8ft +2k +1 U 1.. + } 2

2 k _ -2 k.J 1512

and

Wt- 2e(-J) 2 + . j-1 k- J (152

As a result of this remarkable simplification, it will be observed that

V ,1 Btj I  and Vj,.I Bz,j.i ,, in (149), have been expressed in a very suitable

form for the application of (56)' and (60, with Z replaced by t - I In both

relations,, to eliminate Btj+I  and B *,j. , respectively, in favour of Bj

(already present in (149))' and B,.I,j . Thus, if we now write

6w - +Atk I (Wto ati + W1 , I t.;I,j)Sj . (153)

we get

W,' - 2[;' 1+ -k; 2----- - k+(154),
t, kv * k. + +*J- 2 J

and

W£,_I  + - ( ) J 2 Tr J+ 1 + k J

4 + 1 - (155)
kv+j- k+7-
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The final result we require follows from the substitution of (154) and

(155) into (153). Writing Sj in full, we get

(1 k) into (1)1 [(2(1 0 - k(k l w)e BteaWik " Atk 77-( -J 2)(k k j)(k + J - 2)k
6()" 1+ B sin (ul + JvY . (156)

7(k+- j !4 l)( j i- I) BZ- J '

Equation (156) is the general formula for 6w due to U As with 131)

and (140), for 6r and Ob respectively, it applies for all t 1 like

'( 40) but unlike (131), on the other hand, values of Ili up to t 1 are

required to cover all the non-zero terms. For each k , zero denominators exist

for five different values of j : for four of these values ( J - -k ± I and

J - -k a 2 ), special formulae are required, in place of (156), as already noted;

only for the fifth value C J -k can a term (for each k C be actually

excluded.

Before proceeding to a poir of formulae for NUw , the total number of

terms required to express 6w for a given value of i , we note (and make

allowance for) one specific null term that arises for each even value of L

For k - 2 and j - t - I , we see from (156) that the coefficient of Btj is

identically zero (i.e. independently of i Y. But BtI,j  is itself zero when

j - I - 1 ,, so this -pecific term of 6wi,2 always vanishes. Proceiding to

N
M
w , we first note that the number of J values for each k (regardless of any

exclusionY is 2Z - 1 (for all L 1 1 C.

If t is odd, then a priori the value of Nw is +(Z )(2 - 1.

There is one excluded value of j for each k - Z , so there are J(t - 1)

exclusions altogether. It follows that

N
5
w - b

2 
, (157)

and values for Z up to 15 are given in Table 6.

If L is even, the a-priori value of Niw is +( + 2)(21 - 1) . There is

again an excluded j for each k * t . amounting to +Z basic exclusions, but

there are now two other sources of discounted re~mz. We have just remarked on

the particular zero term that arises for k - 2 ; wa might prefer to allow zero

actually to be computed in a general computer progran, but here we regard this
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term as an exclusion. The other source of discounted terms consists of the

t - I duplications that occur when k 0 (see the footnote of section 6.1 .

Thus the number of effective exclusions is + , and from subtraction we obtain

2 - 1 . (158)

Values for Z up to 16 are give in Table 6.

6.4 Universality of results (non-elliptic orbits)

Equations (1310, (1'0) and (156) give, on summing over k or K as

appropriate,, general formulae for the perturbations dr , 6b and 6w

respectively, due to U . It is being tacitly assumed, in the rest of the

Report, that we are only considering elliptic orbits. It is worth remarking

here,; therefore, that (as follows by a continuity argument) the formulae are also

valid for parabolic and hyperbolic orbits. The formulae are effectively

universal
14
, in other words, though they inevitably fail for rectilinear orbits

'(with infinities arising from zero p).

7 THE SPECIAL CASES, AND INTEGRATION CONSTANTS

The main results in this section,; obtained in section 7.4, are the formulae

required to supplement (156), the general formula for 6w . These formulae,

covering the cases j - -k ± 1 and -k 1 2 ,, are forced by the 'constants' for

6e and 6M , which are determined so that certain terms (those for j - -k ± 1Y

can be excluded from 6r . Though we have omitted (in section 4J the full

expressions for the short-period perturbations, 6 , in the elements,, we give

here the adopted 'constants' for all the . Five of the elements have

constants chosen to suit 6r , 6b and 6w for completeness, we start with

the lemi-major axis, for which the constants are mandated by the use of a'

as5 .

7.1 Mandatory constants for 6a

We go back to the original expression for 6a due to UZ , vim (63). We

can expand the conplete factor )p/r)t
1+  

in terms of the Bt.2,j (ocf the

expansion via the Bfj in (65)). On taking just the term of the expansion with

j - -k , we isolate the constant term that (for each k * and a given J.  is

mandated by taking S a'
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The result can be written in the form (for the 'constant' component of

6aik(c) " -2aq
-2 

A~k BL 2,k Cos k'. (159)

7.2 Constants for 6e and 6M

The task in this section is to derive the formulae for detk(OY an

amik(c) that will legitimize our taking the terms in 6rik for j - -k - 1 and

-k -I to be zero. These 'constants' will complete the formulae, for 6e and

6M , given by the integrals of (76) and (105) respectively.

We start by observing that (131)a the general formula for 6rmk 1 was

obtained by combining the two different denominators from 129Y and (30). If we

do not combine the denominators, we can rewrite the formula as

-1ink -Au ( *~ 1 B Z ~~-1.j Cj . (160)r~k - - +(X - 1)p A & I ( + - k + j + 1)B ' , C 1 0

The first denominator here is associated with the E. summation of

section 6.1. If this summation still applied for j - -k +1 , then the result

would be an infinite coefficient of B.1..k+1 C-k+l . We actually want this

coefficient to be -(t - 1)p Ak 1, since it will then neutralize the

coefficient, 4(i - 1)p Atk , that arises without difficulty from the second

denominator in (160). The situation is similar when j - -k - I and we want the

coefficient of Bt.l,.k.1 C_k.l . from the second term of (160, to be

- (Z - 1Ip Aik (and not infinity) tco neutralize the first term. '(It is recalled

that infinite coefficients are avoided, simply because we deal separately,, in

section 5, with the relevant terms of de/dv and dM/dv .) What we do,
therefore, is to obtain the coefficients of C~k I and C-k-1 that would apply

in the absence of the constants e ( ) and 6Mtk(c( ; we can then derive the

appropriate values of these constants to cancel these putative coefficients.

So what would the first-denominator coefficient of Cj be, with

J - -k + I , in the absence of the constants? There would then be no

contribution from equation 0(23). but still a cont tibution from the complementary

(124), given by 6a . Its value may be obtained from the first term of each pair

in (124) - the second term does not apply because it feeds separately into the

second-denominator coefficient of C_k+1 which behaves normally as we have seen.
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But equation (124) was written down before the 'rearrangement', from (127)

to (128), in which the use of J changed. This change affects the B subscripts,

and it may be seen that the required first-denominator coefficient of Ck+1  in

- a AUk (eBj,~k+2 + 4BZ,.k, 1 + 3eBk-k ) .

The (normally behaved) second-denominator coefficient, on the other hand,,

may be written

Sakk(I - 1 q2 B l.+

To cancel the combined coefficient by use of 6etk(0c and 6M~k(C),

let us suppose that

6elk(c) - Atk x C.k  (161)

and

Smtk(c - AU1 e-
1 
q y S-k, (162)'

where x and y are quantities to be determined. On combining these for a

contribution to 6r '(cf 120)), we get a coefficient of C.k+1 given by

- 4 a A1k (x * y)

so that one equation to be satisfied by x and y is

2(x + y) + eB, k+2 -4BZ.k+l + 3eBt,. - - 1) q
2 
Bt.1 k l - 0 . '163)

The complementary contribution to 6r from (1610 and (162) leads to a term in

Ck I ,. of coefficient

- 4a Ak (x y),

and this combines with two other coefficients of C_k 1 ,, obtained as in the last

paragraph; the result is another equation in x and y

2(x - y) - eBt,_k_2  + 4B ,.k.11  + 3eBi,.k  - (t - 1) q2 BZ.IM.I. 0 . (164)
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Souto of (163) and '(164) gives

x - +{(L - 1)q
2 
(B1 -l,-kal 

+ 
Bi-1,-k-l " 6eBt,-k

LT - ~4(Bt,_k~l + 
B£,kl - e(B£,k+ B ,_2) 0165Y

and

y - {(1 - 1)q
2 

(B1.l. 1 k l -l,1  )

- J;(BZ,_k+1 - BZ,_k_1 - e(B_,-k+2 i,-k-2)} (166)

To get the formulae for 6etk(c) and 6Htk(c) that we require, it remains to

substitute (165) and (166) into (161) and (162). In doing this, we make two

simplifications; we eliminate Bt._,k+I and B.. 1. 1 by use of (60) and

(56), respectively (with t replaced by t - 1 in each case); and we write

BX,k  etc rather than Bt,_k

Finally, then,, we have

6etk(C) - - + A11 {eBt,k 2 - CZ + k - 4)Bi,k I + 2(t + 2)eBtk

- (I - k - 4)Bt,k.I + eBZ,k. 21 cos kW' C167)

and

d
1
k(c) - e

- 1 
q Ak JeB 1,+ 2  ',(t - k - 4)Bt,k I

- 2keB1k -*t - k - 4)BZ,k.1 - et,k. 2 ] sin kw' . (168)

The formulae could, of course, be reduced to a smaller number of terms, by use of

the fixed-Z recurrence relation, C54), but the coefficients would then be much

more awkward; no genuinely simpler versions of (167C and (168) have been found.

7.3 Constants for 61 and 69

In this section we derIve formulae for 6itk(c) and 'Olk(cY to

legitimize our taking the terms for J - -K - 1 and -K - I in '(140), the

general expression for 6b1( , to be zero. The analysis is sonewhat simpler than

that in the preceding section, in spite of the complexity entailed by 'he need to

work with both k and

TR 8902



51

As with 6rt ,, we start by observing that (140) was obtained by combining

two denominators, which appear separately in the preceding (139). When

j - -K * 1 , the second denominator becomes zero and no longer operates; from

the first alone we get, as the effective term in (140), it A. BZ ,+I C
f
C

When j - -K - 1 , similarly, the first denominator in (139) does not operate,

and (140) effectively reduces to +t AU Bt,-K-1 C K 1  These terms have to be

cancelled by the use of 6iik(c( and 6tk(c) , with appropriate k , so we

suppose that

Sitk(c x C-k '(160)

and

6A(o) 
-
1 

Y 
S170)

(In the last section we were able to include Aik in the corresponding

expressions, 1611 and (162), but there is no common factor available now.) On

combining (169) and (170) for a contribution to 6b (of '(121),, we get

+(x - y, Ck
1 

- +(x + y ck -i

If we postpone consideration of any difficulties associated with the

extreme values of k that arise,: then we get a pair of equations for x and y

on identifying g with k * I and k - 1 , respectively, in the coefficients of

and C 1 that have been recorded. Thus the equations are

2(x - yY * t At,k 1 g,-k - 0 (171)

and

2(x + y + t A,k.I Bi,.-k - 0 . 172)

Solution gives

x - tCAZ,k, + At,k 1)B,.e '(173)

and

Y -90A,k+ AZ,k_1)B,. k . 174)
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The expressions in brackets can be replaced by simpler expreaalona, following

(27) and (28), and we also replace Bt,.k by Bik * Then substitution in (169) i
and (170) gives us the formulae we require. Thus

Sitk(c) - BAk B cos k.' (175)

and

k(o)  kcs
"
2 k sin k, (176)

We now have to show that (175) and (176) are valid for the extreme values

of k as well as 'general values'. For k - 9 , the maximum value of k , there

is no difficulty (171) involves a value of Z * I for K in 8b , but this is

all right as B - 0 cf section 6.2); thus x - y - 0 for k - L . For the

minimum value of k (0 or 1, according to whether t is even or odd), it is a

little more complicated: we consider the two cases separately.

If Z is even, with k - 0 , C1 and C61 are the same and we cannot

Separate x y from x - y in the combination of (169) and (170). Thus there

is only one equation to be satisfied (instead of both (1710 and (172) , and it

involves only the identification of K with k + 1 (not also with k - I (.

The equation reduces to

x - -44 A1 ,1 8 ,0  (177),

which is consistent with (175), in view of (29) The value of y is

indeterminate, but this is appropriate for the coefficient of sin kw' , which is

itself zero when k - 0 . If t is odd (with k - I ), on the otl-r hand, the

validity of (175) and (176), follows in essence from the argument just prior to

the establishment of equation (lO), and the details are omitted.

A last point in this section is noted as no more than a cariosity. Whereas

the rest of 8ilk and 6nik contain Aik and A& , respectively, as a factor

of every term,, as indicated by (79 and (82), these factors are reversed in the

'constant' terms,, as indicated by '175Y and '076). The point was noted, for

t 3, in Part I.
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7.4 Forced terms in 6w

We now have, for each U only one 'constant' at our disposal; denoted by

dutk(c) , it will be determined in section 7.5 so as to validate the nulling of

the ter-a for j - -k in the formula, (156), for 6wik . For J - -k ± I and

-k 1 2 , on the other' hand, we are forced to accept non-null terms that arise,

via (122), from (167) and (168), the formulae for 6eik(c) and 6'ik(c) . We

derive the formulae for these terms in the present section, which must therefore

be regarded (from the reference viewpoint) as a completion of section 6.

For each of the four special values of j , in principle we embark on a

procedure that is similar to that employed in section 7.2. The basis of this

procedure is that we re-determine the expression for 6w with the appropriate

terms in 6e and 6M (which in their general form would lead to infinities)

replaced by 'constants' proportional to x and y (as defired by (16) and

(162)); the only difference (in principle) from section 7.2 is that we do not

have unknowns to solve for, so that the procedure is 'direct'. In practice,

however, because the basic formula for 6w ,. (122), is so much more complicated

than the corresponding formula for 6r , (120), it is better to proceed a little

differently from this: instead of developing our four special formulae more or

less ab initio, we start four times from the (final) general formula for aw

156), and modify it each time in the appropriate manner.

We start with j - -k - I ; it will be useful to have a shorthand for the

denominator that becomes Zero, so we define

d - k * J - 1 '(178)

for general j and will eventually set d - 0 . In terms of d ,. we can rewrite

,(54) and (155), which on substitution into '(153)' give the final (156), as

i k* 1, 2['1 < - k 1
di, + I* d 2I. - (179)

and

4i 6 4 +-.LA '10
Idi +2t) ld3 d +2 d +1 d d-1I

* I.
. .I
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There is no difficulty with (179), but In (180) a zero denominator appears when F
d Is set to zero. We will find that this denominator disappears when the
'replacement procedure' 13 complete.

The terms we have to replace omie from the first term of ,(143), for which

the general expression is given by (1I44). In the latter equation the 'offending

terms' consist Of the first of each pair; on changing the way j is used, as

usual, the co'bination of the three terms in question Is

*1-2  {~ e 1 + 1 BZ,j+. +2; t 2 Btj + e1 Bt,J.;} SjA k + j 3e k + ~ -1 -'-k

where the zero denominators are evident a3 soon as we set ,j -k + 1 . The

replacement term, aloo based on the f 'at term of 04A3), emerges when 6e and

6M are set, following (160 and (162), to Al x C..k and Atk e-q IQY S-k
respectively. The resulting term in -k is AZX q-

2 
(x - y), S-- (in the

analysis for a - -k- I it will be the term in Sk-1 that we need), so the

required change in 4w is

q-
2 
At (x +y ++d

1
'O(k - Zi-I1) BEk.2

+2(2k - Z - 1) St-+ + 3e(k - Z - 1) Bi..k)} S..i,;

But x + y is given by '(163), so this can be expressed as

jq'
2 
ilk I" - 1) q

2 
Btl k- - d-ie(j + t) Bl--

+ 2ae - Z - 0, Bt-~ + 3eQi - Z) Bt,..i)I S..k,;

We set a - -k - 1 In this expression and then invoke versions of (56) and (58);

s a result it simplifies to

+t- 10 Alk (I - 2d1Y Bt.1 -kl S-k+1

Since only Bt;.,-k; ,, i.e, Bt_.;j ,~ is present in this expression, the

change In 6w can be represented as .change in WZ1 1 (of (153) and (155)Y of

amount 4(Z - 1 2d1) ;than (180) is to be replaced by

1 14 + 6 +
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It is now legitimate to set d - 0 in (179) and (181), the result being

It, 0  -(2- k 2)

and

Wz,-. -4(t - 10

On substituting in (153). we get the first of our four special formulae; it can

be written (with a change of sign in the second suffix of each B

wtk,_ - - Atk{(2Z - k - 2) Bi,k.1

(z - 1) B 1 . 1 }1 sin (kw' + v( . (182)

The second special case is with j - -k - I . This is the twin of the

first case, so it involves

d - k + 1 (183)

and the expression for x - y given by '(164). There is no point in a virtual

repetition of the analysis in detail, so we proceed direct to our second special

formula; it can be written

6w k,-k-1 - + Atk(2t - < + 2' Bk 1

+ 'a - 1) B 1. sin (k.' - v) . '(184)

The symmetry between 182Y and (184) is obvious. For k - 0 , of course, the

equations reduce to the same formula, and the footnote of section 6.1 is again

relevant.

For our third special case, we require to set j - -k * 2 , so we start by

defining

d - k + J - 2 . 185)

Then (154) and (155) take the form

Wa,0  - 2 1 k I - 2 .-'.- . d) (186)
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and

W6 4
Z.1- -2(t - 1), d 3 d +2 d+ 1 d 087),

with the potentially zero denominator In both expressions.

The terms of the general (156) that we have to replace now cate from the

second term of (143), for which the general expression is given by 0(I45). The

'offending terms' are the last three of the six that occur in the latter

equation; with the usual re-interpretation of j , these three terms In

combination give

eq. 2 AU {e + - 2 k B 1 -2k B,

k ~ + j 2 k -j 2 +  j Z,-2 sj

The replacement term in now Alk eq
"2 

(x y), S.k+2 , no the required change in

eq
"2 

A9. Ix - y - d-l[e(k - Z - 1)at,.k. 2

+ 2(2k - Z - 1) eZ,.k+1 - 3e(k . - 1) BE.k]) S-.k,2

With x + y given by '(163)., this can be expressed as

+ eq
" 2 

Atk {(J - 1)q
2 

Btl-.k+l - d-
1
[e(J + 9 -)Bt k-2

+ 2(2 + I - 3)Bt..k. I + 3e(Q - Z - 1)B,.kl S-k 2

We set j - -k + 2 in this expression and then Invoke versions of (514),

,(57) and ,5 ) to eliminate Bt.I._k+ I . BZ,k+I and in favour of

Bt-,-k+2. Thin simplifies the result (for the change) to

- + AiR(2d'i I)(t - k + I + d)Bt, _k+ -k (9 - 1)R.1,-k+2} S-k+2

It now follows, from 816) and 187), that the altered values of WR,0  and

W%._* to be substituted in (153),, are given by

2, [' - 2 +) (X - k - 1 + d) (188)
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and 10

W -, 01 ' ( (19)

and

Wt,.I -( 1)(1I . (189)

Wk'-1  -U 19

Thus the substitution gives, for our third formula,

6wtk,-k-2 - " Ak {3( 
+ 
k ' 5)8tk-2 - 19(1 - 1)B_1,k.2}sLn (kw' + 2v) .

...(192)

Our final special case,, with J - -k - 2 , is the twin of the preceding

(third) case and involves

d k J + 2 193)

We will not go through the analysis in detail, in view of the symmetry, but

proceed directly to the final formula; it is

6wtk,.k.2 " Ak 13(t - k + 5)Bt,k+ 2 - 19(t - 1)B_1,2 } sin (kw' - 2v)

...(194)

7.5 Constants for dw

To complete section 7, it remains to determine the constant, 6Owk(o

that legitimizes our taking the term for j - -k In (156), the general

expression for 6wik 1, to be zero. We already have 6Mk(c) , given by (168), 30

we only need to determine RLik(c) , the constant in 6ILk , for 6wtk(0  to be

known at once.
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We start by now defining

d k j (195)

so that (154) and (155), in their general form with potentially zero

denominators, are rewritten as

d-22 - +1+1 (196)

and

(1 4 6 4 + I07
Wt',1  - 2(t - 1) +

1
+ 2 d + I d d-1 I d 197

The zero denominators will disappear when, for the coefficient of S-k in (153),
we replace a quantity occurring in the general analysis with a quantity based on
aMtk(c) '(6e1k(c) not being involved); then 6ILtk(c)' is defined to null this

resulting coeffiolent.

The quantity to be replaced derives from the combination of (146) and
(147). With our usual re-interpretation of j , we can write the resulting

coefficient of S-k as the sum of

Seq " 2 
Atk d

- 1 
e(1 - kBt,j 2 - 2(1 + Z - 2k)BOtj~l

*6e(I - +t)Bj + 2(1 + Z - 2k)Bt,j.; I e(1 + Z - k)BZ.J_2*

and
S(1- 20( At, d

1  
Bij

associated with I e
2 
q-

3 
6M and q-1 6L respectively. The quantity that has

to replace this coefficient is available immediately from (168), but it is more
convenient to back-track a little and take it instead as + eq"2 AU, y , with y
given by (166). Thus the replacement coefficient may be written,, with J rather

than -k in the B subscripts, as

- eq
"
2 Alk le BAj 2 + 4 B1,j+ - e , - ,j2 Tnupef

"1 " 
(  

" ~~~~1 1q 2 
(BL-, J-,-l
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2  

I)~j,2  ~ j*59

On subtracting from this the coefficient being replaced, we get

, T Atk q2d-
1  

{3e
2
(t j - I *tj+ 6e(9. + 2j + 1)B

-2Ei4(21 -11 + e
2
(t - DI + 6ei - 2j 1 jj

+ 3e
2
(t - j1 + I)B Z,J.2 - 39q

2 
d(Z - 1)BZ-j,j~i - tJ0

By application of versions of the five relations (541) to (58), we can eliminate

Bt,+ and t1,J2 ,then B1t,i and Bt _ and finally BZ1.. 1  and

at1'- - This reduces the foregoing expression to

+A11 d'(E[2(1 - 1 - 3jd) Btj + 6(1 - l)Bti ii

which represents (when j - -k the adjustment required to the coefficient of

S..1 In dw . On adding the appropriate contributions to (196Y, and (197) we get

W (t+k. + I 1I- k . 1 3j1181.0 d -2 d -2 -
3
jii

and

, + 2 d.I d-1 d-2

We can now set d - 0 (i.e. J1 - -k Y, getting

WE0 - 8k (200)

W .- -0. (201)

ad These results mean that, in the absence of 6Ltk(C) . we would have

k Aik<Bt4  a the coefficient of S-k~ In d 1k so, to null this, we take

6114(0 k q AU Blk sin ko' Q2)
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From (168) and the definition of ,we now get

e- - e
1 

Ak [a et,k+2 - (t - k - 4)B,k+1

+ 2keBtk + (I -k - 4)Bt,k_1 - e Bt,k_21 sin AW' . (203)

Finally, 601k(e) is given by (176), so our desired formula for Swtk(o is

Wt(Oc - - 1 e ALA (a g9,k+2 - (9 + k - 4)Bt,k+ I

+ 2kes
-2 

Btk + (Z - k - 4)Bt,k.1 - e Bt,k.2} sin kw' . (204)

It is remarked that as 6wik(c) is free of singularity (as would be

expected), since Atk contains 3k as a factor,, so that ks
" 

A9 k is non-

singular. We also have the non-singularity of a 60tk(c) ,, given by '176), for

the same reason.

8 RESULTS EXEMPLIFIED FOR L FROM 0 THROUGH 4

To illustrate the main results of this Report, derived for general 1 > 0)

we use them to derive results for the particular cases Z I,, 2, 3 and 4 We

start with an analysis for Z - 0 ,. a case not covered by the general formulae -

their failure for t 6 0 stems from the fact that the expansion (33) is then

Inherently infinite,, and not just 'effectively' so (cf Table 0i. Both the cases

t - 0 and t - I (analysed next are actually trivial, since the 'perturbed

motion' can (in each caseY be looked at from a viewpoint which makes it pure

Keplerian 'unperturbed). The interest in these cases then lies in the

interpretation of the perturbation formulae, which relate to the nominal mean

elements Z , in terms of the 'true' (fixed elements of the effective Keplerian

orbit - the elements of the latter will be denoted by T '

For t - 2 and 3 we write down,, from the general results,, the specific

formulae for dr , 6b and 6w that were given before in Refs I ('Part 1'), and

2. Both these papers gave also the specific ' that complement 6r ,. 6b and
6w , and Part I gave the 64 that underlie them -the 6 for Z - 2 are well

known. having been given by many authors. For Z -4 we summarize a complete

(first-order) solution, giving the ' as well as 6r , 6b and 6w , the

coordinate perturbations '(6r, 6b, 6w), like the general formulae from which they

are derived, have not been published before.

TR e9022



61

8.1 The trivial (but exceptional) case 1 - 0

From (4), we have

U0  - - Jo . (205)

This is confirmed by (15), in which k is restricted to zero so that U0  U;

am 0 and A( are both unity, so AO o by (). Thus the effect of

Jo is to reduce the power of the central force as indicated In Ref 4. the value
of the overall 'true' power being given by

uT  I ( - JO
) 

.(206)

The orbit can be fully represented by UT and the 'true elements' T

but it is instructive to exhibit the behaviour of the osculating elements , as

well as the perturbations Sr , 6b and 6w ) relative to the u originally
ass.umed. As the general results of the paper do not apply when Z - 0 , it Is

simplest to derive formulae from the original planetary equations directly.

There are no out-of-plane effects, even as a 'trivial' phenomenon, since we at

once get

61 - 60 - 6b 0 '(207),

so that

- IT  and 1 - OT (208)

From (62) and (205) it follows that

6a - a - a' - -2J0a
2
/r (209)

This is a flirst-order relation, as usual, with a on the right-hand side

interpreted as a' (- X Y; it becomes exact if a
2  

Is interpreted as aa'
There should be no surprise that (osculating) a varlec around the orbit (unless

it is circular)i this results from the use of the 'wrong' u ; with the 'right'

U (uT). the osculating a would have the fixed value aT . Since with rT r
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L

O) " - (210)

where all three expressions identify with V
2
, V being the orbital speed, it

follows that

aT  - a'(1 - Jo (2110

this is an exaot 'elation.

The planetary equation for p ,, ,(70, gives

p - 0(12

and it is found best to take the integral ot this to be

ap - p - V - -2Joa . (213)

Then (209) and (213) lead to the non-singular perturbation for e given by

Se = e - T - -Jo 003 V (214

it turns out that we cannot get a simpler expression for our eventual ar by

altering the implicit constant in (214), based on the explicit constant in '(213Y.

We introduce PT , and hence eT , by noting that

VP - PTPT 1 (215)

since both quantities identify witn h
2 
, where h is the angular momentum. It

follows from this, using ,(206) and (213). that

pT " 1- Joa(1 - e
2
) . (216)

Thence, using (211), we have

eT - + J(o) . (217)
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t The planetary equation for * , (83), leads to

dv 0 J e
1 

cos v, (218)

and we take the integral of this to be

- - = Jo e
-1 

sin v , (219Y

since (it turns out we cannot get a simpler expression for dw by changing the

(implicit) constant. Hence also

6wu- u- - -Jo e
-1 

sin v .(2201

We introduce WT via vT . noting that (6), taken with and without T-suffixes

(and with rT - r ), yields

'(P - PT)/r (e - eT cos v - e(v - vT( sin v .(221)

This leads to

v - vT - Jo e
-1 

sin v '(222)

and hence (taking u - uT)

- a T - - e'
l 
sin v . (223)

From (220), we now see that

r , • (224)

The planetary equation for p , (93), leads to

d 2Jo q r/p , '(225)
Tdv
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and this introduces a difficulty in the analysis for M since (for the first

time) we effectively have a negative power of I + e cos v . The simplest way to

deal with the situation is to change the integra.ion variable* from true anomaly,

v , to eccentric anomaly, E . Instead of (225), we have

-2 0 ;(226)

the integral of this is evidently secular, rather than short-periodic, but for

convenience we use the notation appropriate to short-period perturbations and

write (with the most useful integration constant)

6p - -2J0E . (227)

Toe secular perturbation in p , that has just emerged, is dealt with in

the usual way by choice of a suitable value for I ., not compelled to be equal to

'I ' . With

nT2 aT3 - - Jo* '(228)

we naturally take

1 - nT , nl/(1 - Joy (229)

exactly, the formula being compatible with (211). (Equation '229) is in the

spirit of '115), though not just a particular case of the earlier equation, which

is only valid for Z > 0 . Then (209) and (229) give

df

dT n - TT + J.n(3a/r - 1 .(230)

and hence

$ - Tit . JO 3E - H) '(231)

* The use of E as integration variable leads to a (finite) solution of the
general problem when Z < 0 . The analysis is more complicated now, however,,
as v has to be replaced by E in occurrences of sin u , induced by the
factor P-Z-I (in y) of UX , as well as in the basic (negative) power of
1 + e cos v that arises.
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In combination with (227) we may now write

6 - Jo (E - M) = Joe sin E (232)

(using Kepler's equationY. Using (219), we finally get

am - M - Joe-
1

(q sin v * e
2 

sin E) (233)

We introduce MT via ET , since from the equation

r - a(i - e cos E) (234)

we get (with r -rT ,and both a- aT and e - eT known)

E - ET = Joe-
1
q-

1 
sin v (235)

Then subtraction of the versions of Kepler's equation for M and MT , with the

aid of e - eT again, leads to

M - mT - Jo
e -1 

'q sin v + e
2 
sin E) , (236)

so that (233) yields

MT - '(237)

Thus four of the 4T are the same as the corresponding , the only

differences being for the elements a and e Further, we can apply (120) and

(122) to the i , getting

6r Joa(e2q-1 sin v sin E - 1) (238)

and

6w - Joeq
2 
sin v '2 - e cos v) .239)

In view of )207,. this completes the analysis for t - 0
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U1~ UJ R siJ~ in 8 (240),

r2

This transforms t,)

U 1 V I-PL.Cos U' '(241)

by (15), In the general analysis, where

A1  J~ , a 242)

by 01), and sin B-s sinu -aco,;u' As noted in Ref 4, '(240) implies that

P , , V& -z - rz cs (4w O~12(243(r U ~r r o + )~*0d
2

where Z - -Jj R so3 the overall potential is th, same '(to first order(, as :or a
central force towards the point at distance z ,,and axially 'north', fron the

nominal centre of 'unperturbed' attraction. (The precise representation of this

configuration requires that for each t > 0 ,, JE has a specific value, given by

..(..4 )i -)

Wle have three essentially equivalent parometer3 ( J1 , AlI and z (, and

our formulae can be expressed in terms of any one of these, but it is more

convenient to use a fourth parameter, X. , defined by

A c Zp - -3 1 AlI - -Jj a/p '(244)

Then the general formulae, taken with Z I , lead to the followingt (131)

gives

6r -0 '(245)

(1040). with < 0 and J -0 ,gives

6b - On '(246)
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and (182), with k - 1 * gives

6w - - sos u. (247),

Though (247) is taken from a special-case formula (because J -k 1 1 , the

general formula, 156), actually gives the same result because the second term of

this formula, which is responsible for the zero denominator, does not arise. Our

formulae are consistent with (132),, (142) and (157), which give

(Nl,r, N1,b, NI,w )  - (0, 1, 11 ,(248)

as seen also from Table 6.

Expressions for the 6C can be written down easily enough,, following the

general analysis, but it is of more interest 
to obtain formulae relating the

(mean elements relative to the nominal attraction centre to the ;T 'unchanging

osculating elements relative to the 'true' centreY. This can be done via the

)verying osculating elements) and derived quantities, since no conventional

definitions are involved in relating the C to the T •

We start with '(243), which may be taken to express V/rT . It leads to

r - rT - Ap sin B , (249)

so that,, in view of (245),

- rT + Aps sin u .(250)

Now this is true for all u ; but I- aT , T - eT  and R -MT must all be

independent of u , whilst defining I - rT  via (120). This is only possible if

- a, (251)

- eT - 1q
2
s sin (252)

and

M, A * e-q
3

s cos w (253)
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Thus we have established three of the desired relationships; (251) could

also be obtained, more directly, by identifying two different expressions for V
2

(of (210)).

We can proceed in a similar way to get the relationships for I and a

Some geometrical visualization is neede', and we may regard the difeerence

between b and bT as validly defined, independently of the precise location of

the 'mean orbital plane' which is involved in defining the coordinate b . This

difference is given by a projection of the displacement z perpendicular to the

(meanl orbital l.lane, such that

b - bT - cz/r - Xcp/r . (254)

Then from '(2466,

Sb T - ce cos v (255)

(where U is actually zero, by definition, but this is not relevant to the

argument). AS with (250), this is true for all u , whilst V - bT may be

expresed in terms of T - iT and T - T via (121 . It follows that

T i T  Ace sin w (256)

and

i OT - Ics-le Cos w . (257)

This only leaves the relationship between 7 and w to be established.

It was not obvious how to proceed, analogously to (249) and (254), via a formula

for w - wT , so the procedure adopted was based on formulae for V - vT and

- uT . The first of these comes easily from (252) and (253); thus

V - v
T 

a +ie-'s {e
2 
cos (u - v) - 4e cos u - (2 - e

2
) cos .) . (258)

For the other relationship, we need the special formula (that can be derived for

the given geometry)

c(u - uT ) - sin u cos u '(I - iT ) - ( - e2 sin
2 
u)(Q - iT) . (259)
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From this, using (256) and (257) together with the expressions (omitted here) for

61 and 6 , we get

u - - fxs
-I 

es
2 
cos (u - v) + 2 cos u e(1 + c

2
) cos w} (260)

If we introduce also the (omitted) expression for 6u , (260) gives

- UT + X-1s [es
2 

coS (u .vy . 482 cos u + e(1 + e2) cos }l (2610

From (258 and (261) we have, finally,

M - WT - Xe1 s1(s
2 
- e

2
n
2
) co2 a. (262

It is worth rear ing, in conclusion, that (262) can be used to infer the

formula for w - wT  that seemed less obvious, Intuitively, than the formula for

b - bT . We find that

w - WT (lp/rs cos u . (263)

Now that the missing formula is available, it is much easier tc visualize its

geometrical Interpretation, especially for polar orbits (3 - 1),

8.3 The case I - 2

This time we start by noting, from Table 6 or the underlying formulae, that

(N2,r, N2,b, N2,w) - (2, 2, 3Y ',264)

so that there are altogether seven terms In the coordinate percurbations. As in

previous papers, we simplify the coordinate expressions by using the notation K

and h , where

K +J2 (R/p)
2  (265)

and

h - +ft. (266)
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Then Tables 1 and 2 give

A2 ,0  - - -|Kh, A2 , 1  -Kcs , A2,2  - j-Kf (267),

and Table 4 gives

B1 ,0  B2,0 - 1 ,, 82,1 - B2,.1 - 4e . (268)

The two terms of 6r are given by (131) with (k, J) - (2, 0) and

(0, 0) . We get, immediately,

dr - +Kp(f co 2u - 2h , (269)

confirming equation (188) of Part 1. (The single-term variable part of this

formula has been given by other authors, of course; the best-known derivation

was probably that of Kozal
15
, but King-Hele and Gilmore established the result

somewhat earlier, In equation (A-59) of Ref 16.)

The two terms of 6b are given by (1401 with '(K,, J) - (1, 10 and

(1, -11 , since 'I, O) corresponds to an 'excluded term'. We get

6b - +Kees {sin u + vi - 3 sinui ,, 1270)

confirming equation 1890 of Part 1.

For 6w , we might have expected five terms after the exclusion of

(k, j) (0, 0) . But (2, 1Y is an example of the specific null term given in

general by (2, -) , whilst the terms for (C, 1) and (0, -1) , being

identical, are combined. None of the terms is given by the general formula,

(156): the term associated with (2, 0) is given by '(192); the term associated

with 12, -1) is given by 0182), and the pair of'terms associated with (0, ±1)

are each given by either* (182) or '(184). Overall, we get

6w - if sin 2u - 4ef sin (u * w * 8eh sn vi , ' (2711

confirming equation (190) of Part 1.

In writing down specific formulae for &; and Ow when t is even and
k zero, we must always remember to double the coefficient of each term with
j - 0 , when our intention is to co%er the corresponding term with -j
(cf the footnote of section 6.1).
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The long-term motion, for : 2, comes entirely from the secular rates of

change, t and -0 , given (from section 5) by -Knc and 4Kn(4 - 5fY4

respectively. They are quoted here, only to remind the reader of the additional

'carry-over' terms in 6r ,, db and Nw that they induce. Ir Part 1, these

terms are included in equations (194) - (196, as opposed to equations

(188)- (190); the intervening equations, (191)- (193), refer to the velocity-

coordinate perturbations, namely, 6 , 66 and 8 .

Finally, of course, since J2  for the Earth is of order V j for Z > 2

the perturbations of order J22 have to be taken into account for Earth

satellites. Part 1 gives a detailed analysis of these perturbations, and the

resulting formulae constitute the principal results of that Report: equations

(320), (343), and (359) of Ref 1 give the contributions to 6r , 80 and 6w

respectively, whilst the long-term effects are covered by equations (297) to
(300.

8.4 The case I - 3

From Table 6,

(N3,r, N3,b, N3 ,0 - (5, 6, 9) , (272)

so that there are 20 terms, in total, in the coordinate pe-turbations. As in

Part I we write

H - +J3 (R/p)
3 

. (273)

Tables I and 2 give

A3 ,0  - +6e(2 - 5f), A3 ,0 -+F.9(4 - 5f) . (274)

A3 ,2  - Hfc, A3,3  - H 6sf (275)

also Table 4 gives, in additinn to quantities we already have from '(268),

B3,0 -I + e
2
, 83,0 - e, B3.2 -e2 . (276)
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We start with Sr , separating (for convenience) the effects for k = 3

and k - I For k - 3 , all the a-priori values of j must be included,

namely, 1, 0 and -1; for k - 1 , on the other hand, we exclude j - 0 . Then

(131) gives, corresponding to the two values of k

6r - *.Hpsf 14e sin (3u v + 15 sin 3u - 20e sin (2u + w)} (277)

and
6r - &Hpes (4 - 5f) fain (u + v) - 3 sin wl (278)

these conform with equation (408) of Part 1. (The total 6r is, of couroe,

gSien by adding the two contributions.),

For 6b , the effects are for K - 2 and K - 0 , and the a-priori values

of J are the five with JI $ 2 . For K - 2 we exclude j - -1 , and for

-0 we exclude j - t1 for K - 0 we also lose a term on combining* the

terms with j - u2 . Then '(140) gives, corresponding to the two values of K

6b- - Hcf j2e
2 
cos 2(u v) * 15e cos (2u * v),

+ 20(2 - e
2
) cos 2u - 30e2 cos 2wi '(279)

and

6b- - Hc(2 - 5f){e
2 
cos 2v - 3(2 * e

2
)l (280)

these conform with equation (411) of Part 1.

For 6w , the effects are for k - 3 and k - 1 ,, with the same a-priori

j values as for 6b . For k - 3 , all five values yield terms, but only three of

them come from the general (156): for j - -1 we use (192), and for J - -2 we

use (182). For k 1 ,, the term with - -1 is excluded, and the only general

tem is for j - 2 the terms for j - 1 , 0 and -2 come from (192), (2)

and (184) respectively. Corresponding to the two values for k , we get

In contradistinction to the previous footnote, and as noted in general after
(141) in section 6, the two terms do not have the same numerical coefficient.
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a w - -Hsfe
2  

c (3u 2v) 11e cos (u v)

+ 4(5 + e2) Cos 3u + !5 cos (2u + w) + 50e2 co. (u 2w)) (281Y

and

6w - HsO - 5f)[e
2 
cos (u -2v) - 2e cos (u + (2

- 2(18 - 7e
2
) cos u + 9e

2 
cos (v - w)} (282)

these conform with equation (413) of Part 1.

Expressions for the long-period rates of change of the mean elements can be

written down from the formulae of section 5. The results agree with (from Ref 1)

(373) , (376), (384) , (389) and (399), for I , r , 7 and FI , respectively.

8.5 The (new) case I - 4

From Table 6,

-(N14,r, 
8 4,b', N4,w$ . '(11, 11, 15) '(283)

so that there are altogether 37 terms in the coordinate perturbations, which we

obtain first. To simplify our expressions, we define

0 = "r.J4 (R/p)
4 
• (284)

Then Tables 1 and 2 give

A4,0  - 48G(8 - Of I 35f2), A4.1 - 480Gcs(4 - 7f) . '(285)

A4,2  - -320Gf(6 - 7f), A4.3 - -l120Gcsf, A4,4 - 56OGf
2  

(286)

also Table 4 gies, in addition to quantities we already ave from (276),

B40 - * e2 B4,1 - e(1 * e
2
), B4,2 e2,, 4,3 je3 .(287)
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We start with 6r , as usual, separating the effects for k - 4 k - 2

and k - 0 . The a-priori values of j are the five values for which IJI 9 2

All values apply when k - 4 ; for k - 2 we exclude j - -1 ; and for k - 0

we exclude j - ± 1, whilst the terms for j - ±2 are identical. Then (131,

gives,, corresponding to the three values of k

6r - -2Gpf
2 

16e
2 

cos 2(2u * v), * 35e cos '(4u + v) + 28(2 + e
2
) co 4u

105se cos C3u * w) + 70e
2 
cos 2(u + w)} (288)

6r - -8Gpf(6 - 7f){2e
2 

cos 2(u + v) + 15e cos (2u - v)

+ 20(2 + e
2
) cos 2u - 30e

2 
cos 2ui '(289)

and

ar - -24Gp(8 - 40f + 35f
2
)je

2 
cos 2v - 3(2 + e

2
)• (290),

(The dominant (e-free) terms of (288) and (289) were originally given in equation

(08) of Ref 16.1

For 6b , the effects are for e - 3 and K - 1 , the a-priori values of

j being the seven with IJI S 3 For K - 3 we exolude j - -2 , and for

- 1 we exclude j - 0 and J- -2 . Then (140) gives,, corresponding to the

two values of K

6b - -40csf (4e3 sin 3(u + v), + 35e
2 

sin (3u - 2v)'

28e(4 + e
2
) sin (3u * v) + 70(2 + 3e

2
) sin 3u

+ 14Oe(4 + e
2
) sin (2u - w) - I4oe

3 
ain 30 '(291)'

and

6b - -OGos(4 - 7f)14e
3 
sin '(u + 3v + 45e

2 
sin (u + 2v),

+ 60e(4 e
2
) sin (u + v) - 180e(4 * e

2
) sinw

- 20e
3 

sin (v - )1 (292)

For 6w ,, the effects are again for k - 4 , 2 and 0 ,, with the same

a-priori j values as for 6b For k - 4, all seven j values yield terms,

of which five come from the general (156)', for j - -2 we use (192) and for

J -3 we use (182). For k - 2., the term with J - -2 is excluded, whilst
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for j " 3 , (156) gives another example of a 'specifically null' term (as in

section 8.3); there are non-null general terms for j - 2 and j - 1 ; and the

terms for J - 0, -1 and -3 come from (192), (182) and (184) respectively.

Finally, for k - 0 the term with j - 0 is excluded; the other terms come in

pairs, being 'general' for J - ±3 , from '(192) and (194) for j - ±2 , and from

(182) and (184 for j - ±1 . Corresponding to the three values of k , we get

6w - -Gf
2
{4e

3 
sin (4u - 3v) - 31e

2 
sin 2(2u + v) + 4e(21 + 5e

2
) (.1

x sin (4u + v) + 28(3 4e2) sin 4u + 28e(7 e
2
) sin (3u + *

* 175e
2 
sin 2(u * w) + J40e

3 
sin (u + 3)} , '(293

6w - 4Gf(6 - 7f) (2e
2 
sin 2(u + v) + 4e(5 + 2e ) sin (2u + v

+ 5(8 - 7e
2
) sin 2u - 80e(5 + e

2 
sin (u *

- 4oe
3 
sin (v - 2w)} 294)

and

6w - 4G e(8 - 40f + 35f
2
){2e

2 
sin 3v - 3e sin 2v

- 6(24 + 5e
2
) sin v} . (295

It only remains to give the expressions for the , (secular and long-

period) from section 5. They may also be derived (as a check) from the authcr's

early Ref 4; also, the version of Kepler's third law, given here as (303),

checks with equation (15Y of Ref 3.

There are, of course, no secular rates of change in T or r . Their

long-period rates are given by (108) and (109). with just k - 2 . Thus

- -480 Gneq
2
f(6 - 7f), sin 2w '(296)

and

- 480 Gne
2
cs(6 - 7f) sin 

2
w . (297)

The secular rate of change of 1 ,, given by (110) with k - 0 , is

4 480 Gnc(4 - 7f)(2 + 3e
2
) , '(298)
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and the long-period rate (given just with k -2 )Is 1

t - -960OGne
2
c(3 -7f) Cos 2w. (299)

For the variation of' 7 , we work with 'f , given by the second tern 0of

*(111). Thus the secular rate is given by

--120 Gn(8 - 40f' + 35f'2)(4 + 3e
2
) (300)

* so that from (298) and (300) the secular rate for 'a is

- -120 Gn{4(16 - 62f' + 49f'2) + 9e
2
(8 - 28f' + 21f2)j (301)

Similarly, the long-period rate fcr T is given by

--240 Gn±'(6 - MR)( + ae
2
) cos 

2
. OW(02

froe which the rate for ZY is at once available.

Finally, fcr the variation of' R .we deal with the secular perturbation by

the codification of' Kepler's third law given by '(116. This gives

y12 x3 - vi' - 288oq3(8 - 40f' + 35f'2)1 (303)

based on the perturbation rate (residual to the nean notion)

A -144 Onq
3
(8 - 40±' + 35f2) (304)

given by 0113). Again, the long-period rate, f'rom (113), is given by

* A -480 Gnq)±'(6 - 7f') cos 2w '(305)

thil checks with '(302) and the long-period rate 1cr 1:, which from (114) is

t -- 1680 Gne
2
q±'(6 7f') 00s 2w .(306)
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For completeness in implementing the (first-order) effects of J4 (and any

other ,t ),, it is necessary to incorporate terms relating to what Part I

describes as the difference between mean and semi-mean elements. The effects

induced by the secular variation are included by adding (t/n)m , ( /n)m and

(R/n)m to 'd , Z and f , respectively, where t, * and f are given by

(298), (301) and (304), and where m - v - H as in Part 1. The effects induced

by the long-period variation, on the other hand, are allowed for via additional

terms in the expressions for dr , 6b and aw . Using (120)-(122),. we find

that these additional terms are given by

Sr - 480 Gpemf(6 - 7f) sin (u - u) , (307)

6b - 240 Ge
2
mes {3(0 - 7f) cos (v -w - 7f cos (u + 2)l (308)

and

6w - 240 Gemf(6 - 7f){e con 2u + 4 cos (u + w) - 4e cos 2} (309)

9 CONCLUSIONS

The main function of Part I of the present trilogy of Reports was to

provide details of a new theory of satellite motion, largely based on the use of

a particular system of spherical-polar coordinates in the representation of the

short-period components of the orbital perturbations. The emphasis was on the

derivation of the second-order perturbations due to the zonal harmonic J2 , but

the first-order perturbations due to J3 were derived as well. The latter

derivation has now been extended to an arbitary zonal harmonic, JE '(where

is positivel, sith the development of general formulae of which those for J3

were just a particular case.

The main formlae, which (in their generallty) are believed to be entirely

novel, are those for the perturbations in coordinates. The general terms of

these formulae are given by the summations in (1311, (140) and (156), for the

perturbations in r , b and w , respectively. Terms that would have a zero

denominator are excluded from these summations, as a consequence of the optimal

definition of mean elements, except that replacement terms are needed for the

perturbations in w the formulae for the replacement terms are 0182), '(184),

(192) and (194).
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The formulae for coordinate perturbations are complemented by the formulae,

given in section 5, for the rates of change of the mean elements., In principle,

the integration of the rate-of-change expressions is immediate, leading to the

secular and long-period perturbations in the elements. In practice, however,

there are complications, as was Indicated in Part 1. One of these complications

results from the fact that the expressions really arise as rates of change with

respect to true anomaly, rather than time, and this leads to additional effecos

that are short-periodic in nature. However, the difficulty can easily be dealt

with via the concept of semi-mean elements; the matter was fully discussed in

Part 1, and has been touched on here in the context of the derivation of the

app opriate perturbation terms for t - 4 (section 8.5). The other

complications arise in the long-term evolution of the mean elements, the chief

source of difficulty being the well-known singularities in the standard set of

elements. A preliminary consideration of these difficulties was included in

Part 1, but a full analysis is held over to Part 3, which will also give some

numerical results.

The main limitation of the theory presented by the trilogy is apparent from

its overall title - the gravitational field is assumed to be axi-symmetric, i.e.

represented by zonal harmonics alone. For a complete field, with the tesseral

harmonics included, the author has already published some general formulae (in

terms of cylindrical coordinates rather than spherical coordinates,, though that

is a minor detail), but they apply only to near-circular orbits. The formulae

were originally given in Ref 10, then in Ref 5, and finally as equations (92) -

'(94 ) of Ref 9.

In the formulae referred to, the inclination functions involve an

additional suffix, m ,, to cover the longitude-dependent harmonics. For m - 0

the functions reduce to the Ak(i), and A2,k of the present paper, whilst the

formulae themselves are then equivalent to truncated versions of the present

equations (131), (140) and 0156). Since we now have one set of formulae that

relate to all inclination functions, though the formulae are truncated in regard

to eccentricity, and another set of formulae that are valid for any eccentricity,

though only relating to inclination functions for which m - 0 , an obvious goal

is the derivation of formulae that are 'general' in both respects. There is a

fundamental difficulty,, however, arising from the rotation of the gravitating

primary, which we are able to neglect in the trilogy because it is assumed to

take place about the axis of symmetry.
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The root of the trouble is that the disturbing function (U) is no longer

time-independent when the rotation of an arbitrary primary is allowed for. This

constant, a' , and leads ipso facto to the important

phenomenon of resonance
13
. It will not be easy to develop a unified theory that

covers resonant effects by the same formulae as non-resonant ones. However, a

starting point is obviously the generation of the formulae referred to (in the

preceding paragraph), as being 'general in both respects'; Appendix A gives an

outline of what is involved.
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- !Appendix A

EXTENSION TO THE GENERAL GRAVITATIONAL FIELD

Extending the theory of this Report to the tesseral harmonics (sectorial

included) is an easier matter than might have been expected, so long as the

rotation of the gravitating body is neglected; i.e., we suppose the sidereal

angle, v , to be fixed. We assume the potential to be described by the usual

harmonic coefficients, Cim and Sim , where -Ci.0 can be identified with the

zonal coefficient Ji and SZ, 0  Is taken as zero. For convenience, we

introduce the polar equivalents, Jim and Xtm , where A is longitude and

(Cim, Stm) - Jim (cos mAtm, sin mAm) . (A-i),

(Note: Xam Is not uniquely defined if m > 1 , and if m - 0 we set

Jto- -J ,, so JO must be allowed to be negative.) It is usual, in

practice,, to work with normalized versions of Cix and Sim Zand hence Jm,

but this is an irrelevant complication here. The potential due to Jim

generalLzing equation (4) of the main text,, is given by

Ulm , r (R/r)k P,(sin 0) cos m(A - Xlm) • (A-2)

The expansion of Ukm ,, in terms of the orbital elements, is customarily

based on the family of inclination functions, Ftmp(i , , such that, generalizing

equation '(8),

Pm(sin 0) exp (mX - I Ftmp(il exp ;{(t - 2p)u - m(Q - v)} . '-3)
p-O

As already indicated in the main text of the Report, however, we prefer to use

the index k (- £ - 2p) , rather than p . This index only takes values that are

of the same parity as , but in the extension to m > 0 we have to allow

negative values of k ,, so that its range is now from -1 to *i ; as

compensation, we no longer require the factor uk introduced at equation (8).

Further, we prefer the inclination functions to be real for all values of the

indices, so we define, as an unnormalized equivalent of the Tm5 iM iv Ref 9,
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im expansion will involve 0 as well as the other elements, to reflect

the abandonmsent or axial symmetry, but for convenience we work with 0' def'ined

a'- S jr (A-51

Then Ulm can be decomposed into I , where

Uk - u (R/01~ Jim Fm(i), Cos {kU' m(A' - Xtmil '(A-6),

this is compatible with equation (71) of Ref 9, in which Y and X were the

negatives of the present u' and 0' . (Compatibility with two other papers can
be obtained by noting that her is 14k" times the unnormalized equivalent

of the r'tmp u~,d in Ref 13, whilst Fimp in Ref 17 is identical with Fm

introduced at (A-31, here.)

Nest ie introduce quantities Atne that directly generalize the Atn of

the mai ixt, defining

Aimi -Jem (Rip)l Fkm(i) (A-7),

We also generalize Ck and Sk , by defining
.) i

CfmA -cea Cjv , ku' + m(a, - t)

Sim . 'in (iv + kul - 5(5' - Xi) J ' (A-i)Y

and henceforth we will omit the superfices.

Then '(A-6) to (A-i) give

Ukn - (p/r)" Am
1 

CO Ai

which is a straight generalization of equation (15) of the main tent. When

m S ,k we can also generalize the preceding equation (11) by writing

1
1A- 

1 n(R/p)l atnA s Om* ~ Ami, (A-101

TR889022



82

where At(i), is fromo the family of 'normalized' inclination functions
Introduced in Ref 17 to generalize the Ak(i) , and atmk generalizes cit.m

the formula for atba can be inferred from equation (11) ibid. It then follows

frc~m (A-7) and (A-10) that

tM(i - tmk S cI )n At.(i' (A-lI)

It waa assumed, in (A-10),, that m S k When 0 S k S m ,a different

generalizat'on became necessary In Ref 17, leading to

Atmk - -JI (R/P)1 oimk sm-k ,(1 + C)k Akz'(i) A-2

wnere now the formula for 41mk can be Inferred from equation 013) Ibid; also

(A-7) and (A-12) lead to

-k 
5
iz< am-k (I + 0)k k 5(ij. y-3

For k - m , (A-12) and (A-13) are consistent with (A-li) and '(A-li),
respectively, but otherwise the dual definitions of Akm W and 

tm
k are

distinct. A further complication is that an extension of (A-10) and C(A-111 to

negative k is not -enerally available; (A-12) and (A-13) still operate for

k<0 .with Akl S m , but there is a marked lack of symmetry between the forms

of Ak5(i) And 
0
iLmk for k < 0 In relation to k > 0 . The difficulty for

negative A is not too serious, however,, as Fk '(0, can then be derived from

FkI . -m F-k0, 'A-14)

By appeal to (A-14) as required, the AtmA can always be obtained. There

are advantages In the adoption of a different 'normalization' for the Ak5(i)

however, such that they constitute a fully unified family of functions, defined

for all A and symmetric in regard to the sign of A . The constants 
5
tk

mu.st then also be redefined, to preserve tee Atok uncanged, and the connecting

formL ae is based on (A-i10 rather than '(A-l0). !ie inti educe a variable sign

into (A-i2), to sake the atok always positive; expressed symmetrically In

regerd to the sI9T. of A , the connecting formuila 1s thea

-tk (A~k-2) Jtm (R/p)t atmk Sm L-J~ Ak (I) (A-15)
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The new Akt(i), are defined for t Z m ,as before, but for all k now,

not just for JkI S Z (quite apart from the problem with k < 0 ,. The

recurrence relation for fixed m and k ia

(I-1)(t
2 

- m2)AkX. - (21 - 1)[L(l 1)0 - ok) A'.1,

11 - 1)2 - k
2
) Alt.2 5, - 0 , (A-16)

which Ia slightly aimpler than the relation In Ref 17; the starting values for

this are

Agm(i) - 1 and 4m+.. (i) (m +n 1) - k (A-li)'

though the second of (A-1i) can be dispensed with if we define A01  w to be

zero. A recurrence relation for fixed Zand m is also available, viz

(L. - k)(l + c)Ak+
1 

- 2(m - kc)Ak + (t + k)(1 - c)Ak-
1  

. 0 ,~ -8

in which the symmetry (in regard to the aign of k ) is obvious; expressions for,
A i ,with Iki < Li can be generated 'frcm either end' by Use of just one

starting value from the pair

There is also a recurrence relation for fined t and k , but Instead of giving

it we note that t~he set of 15 relations, each involving Akn(iC and two

'adjacent' functions fom a three-dimensional table, can all be generated from

various subsets of just throe relations; one of the smpleat such subsets
consists of (A-IA)' and the following pair of relations;

(t k)Ae..I,m t m c)Atn iCi )Atl . 0 '(A-20)

and

2(1 -m + )AkA~ (~m.+(00 - C)Akm_ - -k)C1 + )AkAI 0 . (A-20)

(Note in proof: see Refs 19 and 20 for computational aspects of these relations.)
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We will not enlarge on the advantages of the redefinition of Ak(i) and
:tmk  but two disadvantages must be mentioned. First,, since the factors In a

and o in (A-15) can be combined as (1 + c)+(m*k)(I - 0)+(m-k) , we see that a

negative power of either 1 + c or 1 - c appears whenever m < ikl , and this

has to be cancelled by a corresponding positive power that is present in the new

Ak(I) . Second, the use of (A-16) and (A-17) to compute Akm(i under these

circumstances (m < ikl), is inefficient, since the recurrence process has to

work through the unwanted functions with m < t < k.

The Ak ([ are, ike the Ak(iy of the main text, defined regardless of

parity. The constants apm% (and hence the quantities Atmk ) are only defined
for Z and k of the same parity, however, and (as redefined) their only

property to be stated here is that of complete symmetry, so that

0,,1 aik ( >0). (A-22)

But, just as in the main text, we require another set of constants, alm, , and

quantities Akmr , defined when Z and k are of opposite parity, to allow the

formula for 6b to be expressed. The connecting formula corresponding to (A-15)

Is

Aim, . _)+(i-) Jim (R/pl
t  

k sn 0, A m(1) . (A-23)

The RMu, are available at once from the auMK , since (of '26) of the main

text, which, because of the redefinition, is not being directly generalized)

oM -" Ci-1,m,"C (A-24)

Tables and further properties of the redefined inclination functions, and the

associated ronstants, will be given in a separate paper.

By making use of the quantities A mk and Aim< e we find no difficulty on

extending the theory, largely because the treatment of (p/r)t'I , in '(A-9),, via

the Btj , goes through unchanged from the main text. Further, the energy-based

exact quantity, al is still available, followirg the assumption that the

attracting body does not rotate. Thus, equstions (65), (76), (88) and (105), for

6a , de/dy , d ,/dv and M/dv , espectlvely, nrc a nchanged apart fro= the

appearance of Atmk in place of Ai0 . Equation (e2), for du/d , requirec a
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- corresponding change, such that the derivative Aiak replaces Aim This just
leaves (79), for di/dv , for which a slightly more c-aplicated expresaio' is now

required, to reflect the fact that pc
2 

is no longer an Invariant. We have, In

fact,

- npo A
0
mk I Bij Sj . (A-25)

dv

From this, using the version of dp/dv corresponding co equation (74), we get

dv s1(kc - M) Ak I Btj Sj (A-26)dv

in comparison with equation (79), we see that the only additional change is the

replacement of ko by kc - r .

Six of the seven formulae that define 8r , 6b and 6w completely, for

.,.e zonal harmonics,, are immediately applicable to the zonal harmonices, so long

as Atmk replaces Aim and the trigonometric argument includes the term

m(Q' - im) . These six are (131) and (156), for the general 6r and 6w , and

(182), (184), (192) and (194), the four special formulae for 6w . In tha

seventh fornula, (1140) for Ob , t At must be replaced by (Z - m)At,, , in

addition to the inclusion of the extra term in the trigonometric argument. (It

Is, perhaps, suprising that the change to (140) is as slight as this, but it

would have been even less if At, and Aim, had been defined to include the

factors t and I + m respectively; the reason for excluding these factors

was, essentially, to give a degree of homogeneity to (26) and (A-24.1

Finally,, of course, the numbers of terms in Or , db and 6w , for a

given Jim , are greater for m > 0 than for m 0 o , to reflect the distinction
between poaitive and negative a . Thes6 numbers are otherwise independent of

m , however, in consequence of which we write the formulae as follows:

Nir . 2i
2 
- 30 2 1 ,, IA-27)

Nib . 2t2 - 3Z * 2 (A-18) 4

and

2
2  

for odd Z
Nzw - j2(Z2 - 1) for even t (A-29)
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Appendix B

THE QUANTITIES Bjj , AND BO,1  IN PARTICULAR

When j 1 0 , Btj may be expressed in terms of the hypergeometric

function as:

SBtj A (t 1 m(,/2)J F 1 s" - i jO '
2 

,J ;e2).(B-)

where (B-i), applies for all Z . This result is proved, in terms of the function
SBj(e , in Appendix E of Ref 4; it ia also quoted, in terms of the equivalent

Hanson function, at equation (32) of Ref 8. For (0 S ) j < . ,, (B-1), gives a

polynomial in e
2 
; for j Z i > 0 It gives zero; and for Z S 0 It gives a

power series In e
2 
, which can be transformed into a closed expression involving

q '(- V0 - e
2
)) and perhaps 8 (- e/Cl + q)) . All this is consistent with

Table 4.

Equation (B-1) breaks down when j < 0 , owing to the eventual occurrence

of a zero denominator when the hypergeometric function is expanded. Since

Btj - ,, ,, (B-2)

however, this break-down is of no account. The justification of (8-2) comes from

the Hansen-function equivalence and the relation

xii - x!-j B 3

n35 -f thBmll txtwhich follows immediately from the deflnition of Hansen's functions by equation
(35) of the main tent.

The quantity Bo,j is of particular interest, being the simplest of the

Bj that involve 8 . Once it is known, the other such BZj can be

progressively derived using the recurrence relations of the main text.

From (B-1) we have

BO, - - +eF(,, 1+; 2; e
2
) , (B-4)
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But as a particular case of the hypergeometic relation proved as equation (9.2)

of Ref 18, we have

F(i, 1+; 2; e
2
) - 2q"lF(+, 1; +; q

2
) - 2F(1O, 1+; 1+; q

2
) (B-5)

Also, it is immediate (from the expansion) that

F(a, b; a; q
2
) . (1 - q2)-b , (B-6)

independently of a , so that (B-5) gives

F(1, 1+; 2; e
2
) - 2/q(l * q) . 13-7)

FUpily, (B-4) and (B-7), give

B0,1 - - 1, (B-8)

in conformity with the entry in Table 4.
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88 THE FUNCTIONS Alk(i)

kO 1 2 3 5

0 1I

2 1 -+f c1 I

5 c(l - 7f-V f
2
), 1-f. 4f

2  
c(l - 4f)" i

6 1 9 f+Lp r-1W f
3 

c(1-4f V f
2

) I - 3f + ?f
2 

c(1-V r) i-~ H 1
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Table 2

THE CONSTANTS a& AND a..k

k/ 0 1 2 3 4 5 6

' 5 105 sos 315 231 231" T --52- "-3- 12 15-' " -2

-6 15 _ 35 a3 63

5 3 is is 3 35

4 + -2 4~~

j:-- -3 3

2

3 5

-1 1

4 3I 153

1 -- 1

2 -- --f

~ + 15 35 6

6 - - 315 231
1 "NT53 T91 5
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90 Table 3 i,
I I THE FUNCTIONS Bi(e) I

.1 0 1 2 3 4Z 6i

2 1 1

2 1 ,+21 +0

5 l1+3e2 +44 I + e2 I +1e

6 1 +56
2 

. i04 I 1+ e
2 

+ j04 .+ e2 1 + je
2  

I1

7 1 ye2 +44e4 +AO6  1 + +e2 + e4 a~
2

+A e4 + .e
2  

1 + e
2 

1 1
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TH QUANTITIE 8

0 2

1 0 1 2

2 0e 1 0e 0 0

3 e 4(2 -e
2
), e 4e

2  
0

4 4e(O A J< 42 - 3A) 4e(4+ e2) 4e
2  

e
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Table 5

THE QUANTITIES EM

k 0 1 2 3

-3 3eq-
5  

-fq-
5

(4i 3e
2
) 5eq-

5  -e 2q-
5

-2 eq-
3  

-4q-
3  

e-

*-1 0 -q-
1

0 0

I e

2 3e (I . 2e2)

3 +.e(4 . e2) 1 4 ~2  
I-e(2 , 3A2

'4 .e('4 * 3e2) 7-4*~e
2 

* 4e4) L.e(2 + 5e
2), je2(3 + '4e2 )
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Table 6

THE NUMBER OF TERMS IN 6r, 6b AND 6w

• N,r 1 ,b  Nz,w

1 0 1 1

2 2 2 3

3 5 6 9

11 11 15

5 18 19 25

6 28 28 35

7 39 40 49

8 53 53 63

9 68 69 81

10 86 86 99

11 105 106 121

12 127 127 143

13 150 151 169

14 176 176 195

15 203 204 225

16 233 233 255
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LIST OF SYMBOLS

(Usage for the main text only)

a SeMI-Major axis

energy-based fixed value of a

At(i) 'normalized' function of inclination

A&k quantity,, based on Ak(i) , defined by (14)

At, similar to Alk , but defined by (17)

Aik derivative of A with respect to I

A& k3-1 AUk t a-) A <

b latitude-like spherical coordinate of (r, b, w)

8j(e) normalized function of eccentricity

Btj quantity related to 8 (e) , defined by 32)

6 derivative of Bij with respect to e

o cos i

C(or Cj) cos (jv - kul) ,(dtfferent meaning in Part 1)

d shorthand for k - j - 1 etc in sections 7.4 and 7.5

Ot(i) inclination fanction, quoted from Ref 4

e eccentricity

E eccentric anomaly (only required in section 8)
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LIST OF SYBL cniud

Ej(e) eccetriity function, quoted from Ref 4 *
Ejj qiantityrelated to Eejdefined by (48)

G ~ n*-J4 (R/p)
4 

(in section 8.5)

h angular momentum (but I - +f in section 8.3)

H +. J3 (R/p)3,(in section 8.4)

I Inclination

index asscciated with multiple$ ofv

JZ zonal harmonic coefficient for the Earth

k Index associated with multiples of u

K + J2 "(R'p)
2 

'(in section 8.3)

9. Inden of JZ

L quantity su~h that L- *q - n*

m v - M in section 8.5 (and Part 1); otherwise ant arbitrary
Integer

M mean anomaly

n mean motion
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We will require derivatives of the inclinatlion functions. It is evident

from (10) that

d [kj) UI - k)(t , k + 1) 5 kh1 (18
di i 2(k * 1) a

from this and ,(14) it follows that the (partial) de~ivative of Ak with respect

to i is given by

(/p {ko A (i - (Z - k)1 k + 1) fA '(19)

where f - S2 The quantity in (curly) brackets is the Db(iY of Ref A. We

will also require, finally, the particular combinations of Ate and AU

denoted by A;k and Atk , and given by

Ak - ks
-1 

ANk a 0
- 

Aik , (20)

the s
-
1 and c

-
1 factors do not mply singularities, as they must always

cancel via < AUk and Ajk respectively.

The Ak(iY and a~k (and hence the Att 'm nay be computed with the aid of

recurrence relations. A fixed k was stipulated in Ref 4 for the formula

(i + k) A (i) - (21 - 1) c Ak.1(i) - - < - k) A(2 (i) , '21)

valid for A k + 2 with the starting values Ak(i) - 1 and A. 1(i) -

(21) is even valid for A - K + 1 , if an awbitrary (but finite) Ak_1(i) is

assumed. However, it is usually more useful to stipulate a fixed A , the

*aqucred formula wag giver by Merson
11

, being

Ak(-) k cA ,) (Z - < - )I + ) f 2) f +2(i)(22)

valid for Z - 2 1 k A 0 with the starters A ( - 1 and A[-
1
(i) -

(221 is alo valid for k - A - 1 ,, with an arbitrary (finite) A ,i) . Either

of the two preceding 'pure' three-term recurrence relations, (2,) or (22), can be

,soa with just one 'miAed' such 'elation to genorate all the relations cornecting

the A(i) . perhaps toe simplest -ixei relation (with neitner Z nor k fixed)

89
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LIST OF SYM4BOLS (continued)

Nt,r- Nt,b- Nt,w numnber of terms (for given L) in 6r, 6w. it

p ~ parameter (aemi-latus rectum) of orbit

V Legendre polynomial (of argument aupplied)

q vo - e
2
),

Qj(e) normalized eccentricity function Quoted from Ref 3

r radius-vector coordinate of (r, b, W1

j i Earthas equatorial radium

Ri(for Rk quantity defined by (125Y '(different in Part 1),

3 sin I

S (or Sj) ain Qv , kW) '(different meaning in Part 1)

t time

rj (ror Tjj quantity defined by (137)

u argument of latitude, v -

Umodifier' u (- V wu' -u

UZ ~ potential due to J

Z component of Ut
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LIST OF SYMBOLS (continued) [
Vtrue anomaly

v orbital speed (used only in section 8)

Vjpj Vj,a. Vj,-.. quantities introduced at (1149),

w longitude-like spherical coordinate of (r, b, w)

WIO. Wt...i quantities Introduced at (153)

x, y general unknown quantities (different in Part 1)

Xmi generic Hansen function (of eccentricity),

Z -J, R (section 8.2)

Rk fixed constant, defined by (12)

so~ fined constant, defined by (16)

a geocentric latitude (declinatifin); e/0l q) in sectlon 3

1 symbol fo- pur'e short-pe. Lod perturbation (6p in Part 1),

C generic orbital element (osculating)

mean element correspcncing to

seni-nean elemnt

rate ofchange of -t due 'o Ut
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LIST OF SYMBOLS (concluded)

'K Index related to k, but of opposite parity

A -J, R/p (section 8.2)

u Earth's gravitational constant

P quantity such that + q*

modified mean anomaly at epoch

summation (different use of I in Part 1)

Uk I If k - 0, 2 if k > 0

quantity such that + ch o

argument of perigee
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